[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2996913.2996973acmotherconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
demonstration

Pyspatiotemporalgeom: a python library for spatiotemporal types and operations

Published: 31 October 2016 Publication History

Abstract

The Pyspatiotemporalgeom library is a pure-python library implementing spatial data types, spatiotemporal data types for moving regions, and operations to create and analyze those types. The library is available on the Python Package Index (PyPI) and has been downloaded over 18,000 times since its release. In this paper, we demonstrate mechanisms to create random spatial data and perform operations over them. We then show how to create moving regions from existing data, and demonstrate aggregate operations over moving regions.

References

[1]
V. T. de Almeida, R. H. Guting, and T. Behr. Querying moving objects in secondo. In Proceedings of the 7th International Conference on Mobile Data Management, page 47. IEEE Computer Society, 2006.
[2]
S. Dieker and R. H. Guting. Plug and play with query algebras: Secondo, a generic dbms development environment. In Database Engineering and Applications Symposium, 2000 International, pages 380--390. IEEE, 2000.
[3]
M. Erwig and M. Schneider. Partition and conquer. In International Conference on Spatial Information Theory, pages 389--407. Springer, 1997.
[4]
R. H. Güting, M. H. Böhlen, M. Erwig, C. S. Jensen, N. A. Lorentzos, M. Schneider, and M. Vazirgiannis. A foundation for representing and querying moving objects. ACM Transactions on Database Systems (TODS), 25(1):1--42, 2000.
[5]
J. A. C. Lema, L. Forlizzi, R. H. Güting, E. Nardelli, and M. Schneider. Algorithms for moving objects databases. The Computer Journal, 46(6):680--712, 2003.
[6]
I. V. Lopez, R. T. Snodgrass, and B. Moon. Spatiotemporal aggregate computation: A survey. IEEE Transactions on Knowledge and Data Engineering, 17(2):271--286, 2005.
[7]
L. Maughan, M. McKenney, and Z. Benchley. A model of aggregate operations for data analytics over spatiotemporal objects. In International Conference on Conceptual Modeling, pages 234--240. Springer, 2014.
[8]
M. McKenney. Pyspatiotemporalgeom documentation. http://www.cs.siue.edu/marmcke/docs/pyspatiotemporal-geom/, 2016. Accessed: 2016-06-28.
[9]
M. McKenney. Pyspatiotemporalgeom package. https://pypi.python.org/pypi/pyspatiotemporalgeom/, 2016. Version 0.2, Accessed: 2016-06-28.
[10]
M. McKenney. Pyspatiotemporalgeom source code. https://bitbucket.org/marmcke/pyspatiotemporalgeom/, 2016. Accessed: 2016-06-28.
[11]
M. McKenney, R. Frye, Z. Benchly, and L. Maughan. Operations to support temporal coverage aggregates over moving regions. GeoInformatica, pages 1--14, 2016.
[12]
M. McKenney and B. Olsen. Algorithms for fundamental spatial aggregate operations over regions. In Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, pages 55--64. ACM, 2013.
[13]
M. McKenney, R. Shelby, and S. Bagga. Implementing set operations over moving regions using the component moving region model. GeoInformatica, pages 1--28, 2016.
[14]
M. McKenney, S. C. Viswanadham, and E. Littman. The cmr model of moving regions. In Proceedings of the 5th ACM SIGSPATIAL International Workshop on GeoStreaming, pages 62--71. ACM, 2014.
[15]
M. McKenney and J. Webb. Extracting moving regions from spatial data. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, pages 438--441. ACM, 2010.
[16]
M. Mckennney and R. Frye. Generating moving regions from snapshots of complex regions. ACM Trans. Spatial Algorithms Syst., 1(1):4:1--4:30, July 2015.
[17]
A. P. Sistla, O. Wolfson, S. Chamberlain, S. Dao, et al. Modeling and querying moving objects. In icde, volume 97, pages 422--432, 1997.

Cited By

View all
  • (2023)Reconstructing Spatiotemporal Data with C-VAEsAdvances in Databases and Information Systems10.1007/978-3-031-42914-9_5(59-73)Online publication date: 28-Aug-2023
  • (2016)Implementing Maps: Map2DMap Framework10.1007/978-3-319-46766-5_9(107-140)Online publication date: 5-Oct-2016

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
SIGSPACIAL '16: Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
October 2016
649 pages
ISBN:9781450345897
DOI:10.1145/2996913
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 31 October 2016

Check for updates

Author Tags

  1. aggregate operations
  2. component moving regions
  3. moving regions
  4. pyspatiotemporalgeom library

Qualifiers

  • Demonstration

Conference

SIGSPATIAL'16

Acceptance Rates

SIGSPACIAL '16 Paper Acceptance Rate 40 of 216 submissions, 19%;
Overall Acceptance Rate 257 of 1,238 submissions, 21%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)4
  • Downloads (Last 6 weeks)0
Reflects downloads up to 19 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Reconstructing Spatiotemporal Data with C-VAEsAdvances in Databases and Information Systems10.1007/978-3-031-42914-9_5(59-73)Online publication date: 28-Aug-2023
  • (2016)Implementing Maps: Map2DMap Framework10.1007/978-3-319-46766-5_9(107-140)Online publication date: 5-Oct-2016

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media