[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Scanpath Trend Analysis on Web Pages: Clustering Eye Tracking Scanpaths

Published: 15 November 2016 Publication History

Abstract

Eye tracking studies have widely been used in improving the design and usability of web pages and in the research of understanding how users navigate them. However, there is limited research in clustering users’ eye movement sequences (i.e., scanpaths) on web pages to identify a general direction they follow. Existing research tends to be reductionist, which means that the resulting path is so short that it is not useful. Moreover, there is little work on correlating users’ scanpaths with visual elements of web pages and the underlying source code, which means the result cannot be used for further processing. In order to address these limitations, we introduce a new concept in clustering scanpaths called Scanpath Trend Analysis (STA) that not only considers the visual elements visited by all users, but also considers the visual elements visited by the majority in any order. We present an algorithm which automatically does this trend analysis to identify a trending scanpath for multiple web users in terms of visual elements of a web page. In contrast to existing research, the STA algorithm first analyzes the most visited visual elements in given scanpaths, clusters the scanpaths by arranging these visual elements based on their overall positions in the individual scanpaths, and then constructs a trending scanpath in terms of these visual elements. This algorithm was experimentally evaluated by an eye tracking study on six web pages for two different kinds of tasks (12 cases in total). Our experimental results show that the STA algorithm generates a trending scanpath that addresses the reductionist problem of existing work by preventing the loss of commonly visited visual elements for all cases. Based on the statistical tests, the STA algorithm also generates a trending scanpath that is significantly more similar to the inputted scanpaths compared to other existing work in 10 out of 12 cases. In the remaining cases, the STA algorithm still performs significantly better than some other existing work. This algorithm contributes to behavior analysis research on the web that can be used for different purposes: for example, re-engineering web pages guided by the trending scanpath to improve users’ experience or guiding designers to improve their design.

References

[1]
Andrew Abbott and Alexandra Hrycak. 1990. Measuring resemblance in sequence data: An optimal matching analysis of musicians’ careers. American Journal of Sociology 96, 1 (July 1990), 144--185.
[2]
Hamed Ahmadi and Jun Kong. 2012. User-centric adaptation of web information for small screens. Journal of Visual Languages and Computing 23, 1 (Feb. 2012), 13--28.
[3]
Faisal Ahmed, Yevgen Borodin, Andrii Soviak, Muhammad Islam, I. V. Ramakrishnan, and Terri Hedgpeth. 2012. Accessible skimming: Faster screen reading of web pages. In Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology. ACM, New York, 367--378.
[4]
Elgin Akpınar and Yeliz Yeşilada. 2015. “Old habits die hard!”: Eyetracking based experiential transcoding: A study with mobile users. In Proceedings of the 12th Web for All Conference. ACM, New York, Article 12, 5 pages.
[5]
M. Elgin Akpınar and Yeliz Yeşilada. 2013. Vision based page segmentation algorithm: Extended and perceived success. In Current Trends in Web Engineering (LNCS), Quan Z. Sheng and Jesper Kjeldskov (Eds.), Vol. 8295. Springer International Publishing, 238--252.
[6]
Maria Grazia Albanesi, Riccardo Gatti, Marco Porta, and Alice Ravarelli. 2011. Towards semi-automatic usability analysis through eye tracking. In Proceedings of the 12th International Conference on Computer Systems and Technologies. ACM, New York, 135--141.
[7]
Aris Anagnostopoulos, Michail Vlachos, Marios Hadjieleftheriou, Eamonn Keogh, and Philip S. Yu. 2006. Global distance-based segmentation of trajectories. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, New York, 34--43.
[8]
Jay Ayres, Jason Flannick, Johannes Gehrke, and Tomi Yiu. 2002. Sequential pattern mining using a bitmap representation. In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’02). ACM, New York, 429--435.
[9]
Tanja Blascheck, Kuno Kurzhals, Michael Raschke, Michael Burch, Daniel Weiskopf, and Thomas Ertl. 2014. State-of-the-art of visualization for eye tracking data. In EuroVis - STARs, Rita Borgo, Ross Maciejewski, and Ivan Viola (Eds.). The Eurographics Association.
[10]
Andrew Brown, Caroline Jay, and Simon Harper. 2010. Using qualitative eye-tracking data to inform audio presentation of dynamic web content. New Review of Hypermedia and Multimedia 16, 3 (2010), 281--301.
[11]
Michael Burmester and Marcus Mast. 2010. Repeated web page visits and the scanpath theory: A recurrent pattern detection approach. Journal of Eye Movement Research 3, 4 (2010), 1--20.
[12]
Georg Buscher, Andreas Dengel, Ralf Biedert, and Ludger V. Elst. 2012. Attentive documents: Eye tracking as implicit feedback for information retrieval and beyond. ACM Transactions on Interactive Intelligent Systems 1, 2, Article 9 (Jan. 2012), 30 pages.
[13]
Chung-Han Chiang. 2009. A Genetic Algorithm for the Longest Common Subsequence of Multiple Sequences. Master’s thesis. National Sun Yat-sen University.
[14]
Hannah Faye Chua, Julie E. Boland, and Richard E. Nisbett. 2005. Cultural variation in eye movements during scene perception. Proceedings of the National Academy of Sciences of the United States of America 102, 35 (2005), 12629--12633.
[15]
Tim Chuk, Antoni B. Chan, and Janet H. Hsiao. 2014. Understanding eye movements in face recognition using hidden Markov models. Journal of Vision 14, 11 (2014), 1--14.
[16]
Jacob Cohen. 1988. Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hillsdale, NJ: Erlbaum.
[17]
Filipe Cristino, Sebastiaan Mathôt, Jan Theeuwes, and Iain D. Gilchrist. 2010. ScanMatch: A novel method for comparing fixation sequences. Behavior Research Methods 42, 3 (2010), 692--700.
[18]
Andrew T. Duchowski, Jason Driver, Sheriff Jolaoso, William Tan, Beverly N. Ramey, and Ami Robbins. 2010. Scanpath comparison revisited. In Proceedings of the 2010 Symposium on Eye Tracking Research and Applications. ACM, New York, 219--226.
[19]
Sukru Eraslan and Yeliz Yesilada. 2015. Patterns in eyetracking scanpaths and the affecting factors. Journal of Web Engineering - Special Issue on “Engineering the Web for Users, Developers and the Crowds” 14, 485 (2015), 363--385.
[20]
Sukru Eraslan, Yeliz Yesilada, and Simon Harper. 2013. Understanding eye tracking data for re-engineering web pages. In Current Trends in Web Engineering, Quan Z. Sheng and Jesper Kjeldskov (Eds.). LNCS, Vol. 8295. Springer International Publishing, 345--349.
[21]
Sukru Eraslan, Yeliz Yesilada, and Simon Harper. 2014. Identifying patterns in eyetracking scanpaths in terms of visual elements of web pages. In Web Engineering, Sven Casteleyn, Gustavo Rossi, and Marco Winckler (Eds.). LNCS, Vol. 8541. Springer International Publishing, 163--180.
[22]
Sukru Eraslan, Yeliz Yesilada, and Simon Harper. 2016a. Eye tracking scanpath analysis techniques on web pages: A survey, evaluation and comparison. Journal of Eye Movement Research 9, (1):2 (2016), 1--19.
[23]
Sukru Eraslan, Yeliz Yesilada, and Simon Harper. 2016b. What is trending in eye tracking scanpaths on web pages? In Proceedings of the Measuring Behavior 2016, Andrew Spink, Gernot Riedel, Liting Zhou, Lisanne Teekens, Rami Albatal, and Cathal Gurrin (Eds.). Dublin City University, 341--343.
[24]
Kris Evans, Caren M. Rotello, Xingshan Li, and Keith Rayner. 2009. Scene perception and memory revealed by eye movements and receiver-operating characteristic analyses: Does a cultural difference truly exist? Quarterly Journal of Experimental Psychology 62, 2 (February 2009), 276--285.
[25]
Brice Follet, Olivier Le Meur, and Thierry Baccino. 2011. New insights into ambient and focal visual fixations using an automatic classification algorithm. iPerception: Open-access Journal of Human, Animal, and Machine Perception 2, 6 (2011), 592--610.
[26]
Philippe Fournier-Viger, Antonio Gomariz, Ted Gueniche, Azadeh Soltani, Cheng-Wei Wu, and Vincent S. Tseng. 2014. SPMF: A java open-source pattern mining library. Journal of Machine Learning Research 15 (2014), 3389--3393.
[27]
Joseph H. Goldberg and Jonathan I. Helfman. 2010. Scanpath clustering and aggregation. In Proceedings of the 2010 Symposium on Eye Tracking Research and Applications. ACM, New York, 227--234.
[28]
Prateek Hejmady and N. Hari Narayanan. 2012. Visual attention patterns during program debugging with an IDE. In Proceedings of the Symposium on Eye Tracking Research and Applications. ACM, New York, 197--200.
[29]
Helene Hembrooke, Matt Feusner, and Geri Gay. 2006. Averaging scan patterns and what they can tell us. In Proceedings of the 2006 Symposium on Eye Tracking Research and Applications. ACM, New York, 41--41.
[30]
John Heminghous and Andrew T. Duchowski. 2006. iComp: A tool for scanpath visualization and comparison. In Proceedings of the 3rd Symposium on Applied Perception in Graphics and Visualization. ACM, New York, 152--152.
[31]
Kenneth Holmqvist, Marcus Nyström, Richard Andersson, Richard Dewhurst, Halszka Jarodzka, and Joost van de Weijer. 2011. Eye Tracking: A Comprehensive Guide to Methods and Measures. Oxford University Press.
[32]
Kenneth Holmqvist, Marcus Nyström, and Fiona Mulvey. 2012. Eye tracker data quality: What it is and how to measure it. In Proceedings of the Symposium on Eye Tracking Research and Applications. ACM, New York, 45--52.
[33]
Jana Holsanova, Henrik Rahm, and Kenneth Holmqvist. 2006. Entry points and reading paths on newspaper spreads: Comparing a semiotic analysis with eye-tracking measurements. Visual Communication 5, 1 (February 2006), 65--93.
[34]
Anja Janoschka. 2004. Web Advertising: New Forms of Communication on the Internet. John Benjamins Publishing Company.
[35]
Halszka Jarodzka, Kenneth Holmqvist, and Marcus Nyström. 2010. A vector-based, multidimensional scanpath similarity measure. In Proceedings of the 2010 Symposium on Eye-Tracking Research and Applications. ACM, New York, 211--218.
[36]
Caroline Jay and Andy Brown. 2008. User Review Document: Results of Initial Sighted and Visually Disabled User Investigations. Technical Report. University of Manchester.
[37]
Sheree Josephson. 2010. Using eye tracking to see how viewers process visual information in cyberspace. In Visualizing the Web: Evaluating Online Design from a Visual Communication Perspective, Sheree Josephson, Susan B. Barnes, and Mark Lipton (Eds.). Vol. 1. Peter Lang Publishing, Chapter 5, 99--122.
[38]
Sheree Josephson and Michael E. Holmes. 2002. Visual attention to repeated internet images: Testing the scanpath theory on the world wide web. In Proceedings of the 2002 Symposium on Eye Tacking Research and Applications. ACM, New York, 43--49.
[39]
Ziho Kang and Steven J. Landry. 2015. An eye movement analysis algorithm for a multielement target tracking task: Maximum transition-based agglomerative hierarchical clustering. IEEE Transactions on Human-Machine Systems 45, 1 (Feb 2015), 13--24.
[40]
Olivier Le Meur and Thierry Baccino. 2013. Methods for comparing scanpaths and saliency maps: Strengths and weaknesses. Behavior Research Methods 45, 1 (2013), 251--266.
[41]
Jae-Gil Lee, Jiawei Han, and Kyu-Young Whang. 2007. Trajectory clustering: A partition-and-group framework. In Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data. ACM, New York, 593--604.
[42]
Luis A. Leiva and Enrique Vidal. 2013. Warped k-means: An algorithm to cluster sequentially-distributed data. Information Sciences 237 (2013), 196--210.
[43]
Magnus S. Magnusson. 2000. Discovering hidden time patterns in behavior: T-patterns and their detection. Behavior Research Methods, Instruments, and Computers 32, 1 (2000), 93--110.
[44]
Gary Marchionini. 2006. Exploratory search: From finding to understanding. Communications of the ACM 49, 4 (April 2006), 41--46.
[45]
Marcus Mast and Michael Burmester. 2011. Exposing repetitive scanning in eye movement sequences with t-pattern detection. In Proceedings of the IADIS International Conference Interfaces and Human Computer Interaction. 137--145.
[46]
Sebastiaan Mathôt, Filipe Cristino, Iain D. Gilchrist, and Jan Theeuwes. 2012. A simple way to estimate similarity between pairs of eye movement sequences. Journal of Eye Movement Research 5, 1 (2012), 1--15.
[47]
Eleni Michailidou. 2010. ViCRAM: Visual Complexity Rankings and Accessibility Metrics. Ph.D. Dissertation. University of Manchester.
[48]
Matthew A. Napierala. 2012. What is the Bonferroni correction? AAOS Now - American Academy of Orthopaedic Surgeons April (2012), 1--3. Retrieved from http://www.aaos.org/AAOSNow/2012/Apr/research/research7/.
[49]
Saul B. Needleman and Christian D. Wunsch. 1970. A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48, 3 (28 March 1970), 443--453.
[50]
Julie Pallant. 2007. SPSS Survival Manual: A Step by Step Guide to Data Analysis Using SPSS Version 15 (4th ed.). Open University Press/McGraw-Hill.
[51]
Andrey Tietbohl Palma, Vania Bogorny, Bart Kuijpers, and Luis Otavio Alvares. 2008. A clustering-based approach for discovering interesting places in trajectories. In Proceedings of the 2008 ACM Symposium on Applied Computing. ACM, New York, 863--868.
[52]
Bing Pan, Helene A. Hembrooke, Geri K. Gay, Laura A. Granka, Matthew K. Feusner, and Jill K. Newman. 2004. The determinants of web page viewing behavior: An eye-tracking study. In Proceedings of the 2004 Symposium on Eye Tracking Research and Applications. ACM, New York, 147--154.
[53]
Alex Poole and Linden J. Ball. 2005. Eye tracking in human-computer interaction and usability research: Current status and future. In Encyclopedia of Human-Computer Interaction, C. Ghaoui (Ed.). Idea Group, Inc.
[54]
Claudio M. Privitera and Lawrence W. Stark. 2000. Algorithms for defining visual regions-of-interest: Comparison with eye fixations. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 9 (Sept. 2000), 970--982.
[55]
Kari-Jouko Räihä. 2010. Some applications of string algorithms in human-computer interaction. In Algorithms and Applications, Tapio Elomaa, Heikki Mannila, and Pekka Orponen (Eds.). Lecture Notes in Computer Science, Vol. 6060. Springer Berlin Heidelberg, 196--209.
[56]
Kari-Jouko Räihä, Anne Aula, Päivi Majaranta, Harri Rantala, and Kimmo Koivunen. 2005. Static visualization of temporal eye-tracking data. In Human-Computer Interaction - INTERACT 2005, Maria Francesca Costabile and Fabio Patern (Eds.). Lecture Notes in Computer Science, Vol. 3585. Springer Berlin Heidelberg, 946--949.
[57]
Keith Rayner. 1998. Eye movements in reading and information processing: 20 years of research. Psychological Bulletin 124 (1998), 372--422.
[58]
Keith Rayner, Monica S. Castelhano, and Jinmian Yang. 2009. Eye movements when looking at unusual/weird scenes: Are there cultural differences? Journal of Experimental Psychology: Learning, Memory, and Cognition 35, 1 (2009), 254--259.
[59]
Marc Resnick and William Albert. 2014. The impact of advertising location and user task on the emergence of banner ad blindness: An eye-tracking study. International Journal of Human-Computer Interaction 30, 3 (2014), 206--219.
[60]
Anthony Santella and Doug DeCarlo. 2004. Robust clustering of eye movement recordings for quantification of visual interest. In Proceedings of the 2004 Symposium on Eye Tracking Research and Applications. ACM, New York, 27--34.
[61]
Alistair Sutcliffe and Abdallah Namoun. 2012. Predicting user attention in complex web pages. Behaviour 8 Information Technology 31, 7 (July 2012), 679--695.
[62]
Haruhiko Takeuchi and Yoshiko Habuchi. 2007. A quantitative method for analyzing scan path data obtained by eye tracker. In IEEE Symposium on Computational Intelligence and Data Mining. 283--286.
[63]
Tobii Technology AB. 2011a. Accuracy and Precision, Test Report, Tobii T60 Eye Tracker. Technical Report Methodology/Software version: 2.1.1. Tobii Technology AB.
[64]
Tobii Technology AB. 2011b. Tobii T60 8 T120 Eye Tracker User Manual. Technical Report Revision 4. Tobii Technology AB.
[65]
Geoffrey Underwood, Katherine Humphrey, and Tom Foulsham. 2008. Knowledge-based patterns of remembering: Eye movement scanpaths reflect domain experience. In HCI and Usability for Education and Work, Andreas Holzinger (Ed.). LNCS, Vol. 5298. Springer, Berlin. 125--144.
[66]
Boris M. Velichkovsky, Alexandra Rothert, Mathias Kopf, Sascha M. Dornhöfer, and Markus Joos. 2002. Towards an express-diagnostics for level of processing and hazard perception. Transportation Research Part F: Traffic Psychology and Behaviour 5, 2 (2002), 145--156.
[67]
Julia M. West, Anne R. Haake, Evelyn P. Rozanski, and Keith S. Karn. 2006. eyePatterns: Software for identifying patterns and similarities across fixation sequences. In Proceedings of the 2006 Symposium on Eye Tracking Research and Applications. ACM, New York, 149--154.
[68]
Yeliz Yesilada, Simon Harper, and Sukru Eraslan. 2013. Experiential transcoding: An eyetracking approach. In Proceedings of the 10th International Cross-Disciplinary Conference on Web Accessibility. ACM, 30.
[69]
Yeliz Yesilada, Caroline Jay, Robert Stevens, and Simon Harper. 2008. Validating the use and role of visual elements of web pages in navigation with an eye-tracking study. In Proceedings of the 17th International Conference on World Wide Web (WWW’08). ACM, New York, 11--20.
[70]
Shipeng Yu, Deng Cai, Ji-Rong Wen, and Wei-Ying Ma. 2003. Improving pseudo-relevance feedback in web information retrieval using web page segmentation. In Proceedings of the 12th International Conference on World Wide Web (WWW’03). ACM, New York, 11--18.

Cited By

View all
  • (2024)Identifying K-12 Students' Approaches to Using Worked Examples for Epistemic ProgrammingProceedings of the 2024 Symposium on Eye Tracking Research and Applications10.1145/3649902.3655094(1-7)Online publication date: 4-Jun-2024
  • (2024)A Gaze-Based Analysis of Human Detection of Email Phishing2024 Silicon Valley Cybersecurity Conference (SVCC)10.1109/SVCC61185.2024.10637355(1-8)Online publication date: 17-Jun-2024
  • (2024)The potential of eye tracking data to strengthen CDA’ explanatory power: the case of multimodal critical discourse analysis of advertising persuasionCritical Discourse Studies10.1080/17405904.2024.2331641(1-19)Online publication date: 20-Mar-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on the Web
ACM Transactions on the Web  Volume 10, Issue 4
December 2016
169 pages
ISSN:1559-1131
EISSN:1559-114X
DOI:10.1145/3017848
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 15 November 2016
Accepted: 01 July 2016
Revised: 01 July 2016
Received: 01 April 2015
Published in TWEB Volume 10, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Eye tracking
  2. algorithm
  3. clustering
  4. scanpath
  5. trend analysis

Qualifiers

  • Research-article
  • Research
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)167
  • Downloads (Last 6 weeks)13
Reflects downloads up to 14 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Identifying K-12 Students' Approaches to Using Worked Examples for Epistemic ProgrammingProceedings of the 2024 Symposium on Eye Tracking Research and Applications10.1145/3649902.3655094(1-7)Online publication date: 4-Jun-2024
  • (2024)A Gaze-Based Analysis of Human Detection of Email Phishing2024 Silicon Valley Cybersecurity Conference (SVCC)10.1109/SVCC61185.2024.10637355(1-8)Online publication date: 17-Jun-2024
  • (2024)The potential of eye tracking data to strengthen CDA’ explanatory power: the case of multimodal critical discourse analysis of advertising persuasionCritical Discourse Studies10.1080/17405904.2024.2331641(1-19)Online publication date: 20-Mar-2024
  • (2024)Exploring differences in self-regulated learning strategy use between high- and low-performing students in introductory programmingComputers & Education10.1016/j.compedu.2023.104948208:COnline publication date: 1-Jan-2024
  • (2024)Improving the understanding of web user behaviors through machine learning analysis of eye-tracking dataUser Modeling and User-Adapted Interaction10.1007/s11257-023-09373-y34:2(293-322)Online publication date: 1-Apr-2024
  • (2024)Predicting eye-tracking assisted web page segmentationMultimedia Tools and Applications10.1007/s11042-024-20202-1Online publication date: 9-Sep-2024
  • (2023)Verbal-analytical rather than visuo-spatial Raven's puzzle solving favors Raven's-like puzzle generationFrontiers in Psychology10.3389/fpsyg.2023.120505614Online publication date: 17-Nov-2023
  • (2023)Is Clustering Novice Programmers Possible? Investigating Scanpath Trend Analysis in Programming TasksProceedings of the 2023 Symposium on Eye Tracking Research and Applications10.1145/3588015.3589193(1-7)Online publication date: 30-May-2023
  • (2023)Predicting Trending Elements on Web Pages Using Machine LearningInternational Journal of Human–Computer Interaction10.1080/10447318.2023.226167740:22(7065-7080)Online publication date: 2-Oct-2023
  • (2023)How Do Programming Students Read and Act upon Compiler Error Messages?Augmented Cognition10.1007/978-3-031-35017-7_11(153-168)Online publication date: 9-Jul-2023
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media