[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2930889.2930897acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Computation of the Similarity Class of the p-Curvature

Published: 20 July 2016 Publication History

Abstract

The p-curvature of a system of linear differential equations in positive characteristic p is a matrix that measures how far the system is from having a basis of polynomial solutions. We show that the similarity class of the p-curvature can be determined without computing the p-curvature itself. More precisely, we design an algorithm that computes the invariant factors of the p-curvature in time quasi-linear in √ p. This is much less than the size of the p-curvature, which is generally linear in p. The new algorithm allows to answer a question originating from the study of the Ising model in statistical physics.

References

[1]
Y. André. Sur la conjecture des p-courbures de Grothendieck-Katz et un problème de Dwork. In Geometric aspects of Dwork theory. Vol. I, II, pages 55--112. Walter de Gruyter GmbH & Co. KG, Berlin, 2004.
[2]
A. Bostan, S. Boukraa, S. Hassani, J.-M. Maillard, J.-A. Weil, and N. Zenine. Globally nilpotent differential operators and the square Ising model. J. Phys. A, 42(12):125206, 50, 2009.
[3]
A. Bostan, X. Caruso, and E. Schost. A fast algorithm for computing the characteristic polynomial of the p-curvature. In ISSAC'14, pages 59--66. ACM, New York, 2014.
[4]
A. Bostan, X. Caruso, and E. Schost. A fast algorithm for computing the p-curvature. In ISSAC'15, pages 69--76. ACM, New York, 2015.
[5]
A. Bostan, T. Cluzeau, and B. Salvy. Fast algorithms for polynomial solutions of linear differential equations. In ISSAC'05, pages 45--52. ACM Press, 2005.
[6]
A. Bostan, P. Gaudry, and É. Schost. Linear recurrences with polynomial coefficients and application to integer factorization and Cartier-Manin operator. SIAM Journal on Computing, 36(6):1777--1806, 2007.
[7]
A. Bostan and M. Kauers. Automatic classification of restricted lattice walks. In FPSAC'09, DMTCS Proc., AK, pages 201--215. 2009.
[8]
A. Bostan and M. Kauers. The complete generating function for Gessel walks is algebraic. Proc. Amer. Math. Soc., 138(9):3063--3078, 2010. With an appendix by Mark van Hoeij.
[9]
A. Bostan and É. Schost. Fast algorithms for differential equations in positive characteristic. In ISSAC'09, pages 47--54. ACM, New York, 2009.
[10]
S. Boukraa, S. Hassani, I. Jensen, J.-M. Maillard, and N. Zenine. High-order Fuchsian equations for the square lattice Ising model: Χ(6). J. Phys. A, 43(11):115201, 22, 2010.
[11]
D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras. Acta Inform., 28(7):693--701, 1991.
[12]
D. V. Chudnovsky and G. V. Chudnovsky. Approximations and complex multiplication according to Ramanujan. In Ramanujan revisited (Urbana-Champaign, 1987), pages 375--472. Academic Press, Boston, 1988.
[13]
T. Cluzeau. Factorization of differential systems in characteristic p. In ISSAC'03, pages 58--65. ACM Press, 2003.
[14]
W. Eberly. Asymptotically efficient algorithms for the Frobenius form. Technical report, 2000.
[15]
F. L. Gall. Powers of tensors and fast matrix multiplication. In ISSAC'14, pages 296--303, 2014.
[16]
F. R. Gantmacher. The theory of matrices. Vols. 1, 2. Translated by K. A. Hirsch. Chelsea Publishing Co., New York, 1959.
[17]
J.gathenvon zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, second edition, 2003.
[18]
M. Giesbrecht. Nearly optimal algorithms for canonical matrix forms. PhD thesis, University of Toronto, 1993.
[19]
M. Giesbrecht. Nearly optimal algorithms for canonical matrix forms. SIAM Journal on Computing, 24(5):948--969, 10 1995.
[20]
M. Giesbrecht and A. Storjohann. Computing rational forms of integer matrices. Journal of Symbolic Computation, 34(3):157--172, 2002.
[21]
D. Harvey, J. van der Hoeven, and G. Lecerf. Faster polynomial multiplication over finite fields. http://arxiv.org/abs/1407.3361, 2014.
[22]
T. Honda. Algebraic differential equations. In Symposia Mathematica, Vol. XXIV, pages 169--204. Academic Press, London, 1981.
[23]
E. Kaltofen, M. S. Krishnamoorthy, and B. D. Saunders. Fast parallel computation of Hermite and Smith forms of polynomial matrices. SIAM Journal on Matrix Analysis and Applications, 8(4):683--690, 1987.
[24]
E. Kaltofen, M. S. Krishnamoorthy, and B. D. Saunders. Parallel algorithms for matrix normal forms. Linear Algebra and its Applications, 136:189--208, 1990.
[25]
E. Kaltofen and G. Villard. On the complexity of computing determinants. Comput. Complexity, 13(3--4):91--130, 2004.
[26]
N. M. Katz. Algebraic solutions of differential equations (p-curvature and the Hodge filtration). Invent. Math., 18:1--118, 1972.
[27]
N. M. Katz. A conjecture in the arithmetic theory of differential equations. Bull. Soc. Math. France, (110):203--239, 1982.
[28]
C. Pernet and A. Storjohann. Frobenius form in expected matrix multiplication time over sufficiently large fields, 2007.
[29]
A. Schönhage. Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2. Acta Informatica, 7:395--398, 1977.
[30]
A. Storjohann. Deterministic computation of the Frobenius form. In FOCS'01, pages 368--377. IEEE Computer Society Press, 2001.
[31]
A. Storjohann and G. Labahn. A fast Las Vegas algorithm for computing the Smith normal form of a polynomial matrix. Linear Algebra and its Applications, 253(1-3):155--173, 1997.
[32]
M. van der Put. Differential equations in characteristic p. Compositio Mathematica, 97:227--251, 1995.
[33]
M. van der Put. Reduction modulo p of differential equations. Indag. Mathem., 7(3):367--387, 1996.

Cited By

View all
  • (2024)Algebraic solutions of linear differential equations: An arithmetic approachBulletin of the American Mathematical Society10.1090/bull/183561:4(609-658)Online publication date: 15-Aug-2024
  • (2022)Guessing with Little DataProceedings of the 2022 International Symposium on Symbolic and Algebraic Computation10.1145/3476446.3535486(83-90)Online publication date: 4-Jul-2022
  • (2022)Intrinsic Approach to Galois Theory of 𝑞-Difference EquationsMemoirs of the American Mathematical Society10.1090/memo/1376279:1376Online publication date: Sep-2022
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
ISSAC '16: Proceedings of the 2016 ACM International Symposium on Symbolic and Algebraic Computation
July 2016
434 pages
ISBN:9781450343800
DOI:10.1145/2930889
Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 20 July 2016

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. algebraic complexity
  2. differential equations
  3. p-curvature

Qualifiers

  • Research-article

Funding Sources

Conference

ISSAC '16
Sponsor:

Acceptance Rates

Overall Acceptance Rate 395 of 838 submissions, 47%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)2
  • Downloads (Last 6 weeks)0
Reflects downloads up to 14 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Algebraic solutions of linear differential equations: An arithmetic approachBulletin of the American Mathematical Society10.1090/bull/183561:4(609-658)Online publication date: 15-Aug-2024
  • (2022)Guessing with Little DataProceedings of the 2022 International Symposium on Symbolic and Algebraic Computation10.1145/3476446.3535486(83-90)Online publication date: 4-Jul-2022
  • (2022)Intrinsic Approach to Galois Theory of 𝑞-Difference EquationsMemoirs of the American Mathematical Society10.1090/memo/1376279:1376Online publication date: Sep-2022
  • (2021)Computing Characteristic Polynomials of p-Curvatures in Average Polynomial TimeProceedings of the 2021 International Symposium on Symbolic and Algebraic Computation10.1145/3452143.3465524(329-336)Online publication date: 18-Jul-2021
  • (2020)Computing the N-th term of a q-holonomic sequenceProceedings of the 45th International Symposium on Symbolic and Algebraic Computation10.1145/3373207.3404060(46-53)Online publication date: 20-Jul-2020

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media