[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Computing tropical varieties over fields with valuation using classical standard basis techniques

Published: 17 February 2016 Publication History

Abstract

In this presentation, we discuss the application of classical Gröbner basis (or standard basis) techniques to algebraic problems in polynomial rings over fields with non-trivial valuation arising in tropical geometry.
The key problem we will study is the computation of a tropical variety, given its ideal in the polynomial ring. All algorithms in this presentation have been implemented in the computer algebra system Singular and are available as part of the official distribution.

References

[1]
Elizabeth Baldwin, Paul Klemperer. Tropical geometry to analyze demand. preliminary draft available at http://www.nuff.ox.ac.uk/users/klemperer/tropical.pdf, 2015.
[2]
Tristam Bogart, Anders N. Jensen, David Speyer, Bernd Sturmfels, Rekha R. Thomas. Computing tropical varieties. Journal of Symbolic Computation, 2007.
[3]
Andrew J. Chan, Diane Maclagan. Gröbner bases over fields with valuations. arXiv:1303.0729, 2013.
[4]
Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, Hans Schönemann. Singular 4-0-2 --- A computer algebra system for polynomial computations. http://www.singular.uni-kl.de, 2015.
[5]
Ambedkar Dukkipati, Aritra Sen. Gröbner Basis Theory for Modules over Polynomial Rings over Fields with Valuation. arXiv:1402.6675, 2014.
[6]
Anders N. Jensen. Gfan, a software system for Gröbner fans and tropical varieties. Available at http://home.imf.au.dk/jensen/software/gfan/gfan.html.
[7]
Anders N. Jensen, Frank Seelisch, Yue Ren. gfanlib.so. A Singular 4-0-2 interface to Gfanlib for convex geometry, 2015.
[8]
Diane Maclagan, Bernd Sturmfels. Introduction to Tropical Geometry. Graduate Studies in Mathematics, American Mathematical Society, 2014.
[9]
Lior Pachter, Bernd Sturmfels. Tropical geometry of statistical models. Proceedings of the National Academy of Sciences of the United States of America, 2004.
[10]
Tristan Vaccon. Matrix-F5 algorithms and tropical Gröbner bases computation. arXiv:1402.6675, 2014.

Cited By

View all
  • (2018)Tropical Computations in polymakeAlgorithmic and Experimental Methods in Algebra, Geometry, and Number Theory10.1007/978-3-319-70566-8_14(361-385)Online publication date: 23-Mar-2018

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Communications in Computer Algebra
ACM Communications in Computer Algebra  Volume 49, Issue 4
December 2015
23 pages
ISSN:1932-2232
EISSN:1932-2240
DOI:10.1145/2893803
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 17 February 2016
Published in SIGSAM-CCA Volume 49, Issue 4

Check for updates

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 31 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2018)Tropical Computations in polymakeAlgorithmic and Experimental Methods in Algebra, Geometry, and Number Theory10.1007/978-3-319-70566-8_14(361-385)Online publication date: 23-Mar-2018

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media