[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article
Free access

The equivalence problem for real-time DPDAs

Published: 01 July 1987 Publication History

Abstract

The equivalence problem for deterministic real-time pushdown automata is shown to be decidable. This result is obtained by showing that Valiant's parallel stacking technique using a replacement function introduced in this paper succeeds for deterministic real-time pushdown automata. Equivalence is also decidable for two deterministic pushdown automata, one of which is real-time.

References

[1]
BEERI, C. An improvement on Valiant's decision procedure for equivalence of deterministic pushdown machines. Theoret. Comput. Sci. 3 (1976), 305-320.
[2]
COURCELLE, B. A representation of trees by languages. I. Theoret. Comput. Sci. 6 (1978), 225-279.
[3]
COURCELLE, i. A representation of trees by languages. If. Theoret. Comput. Sci. 7 (1978), 25-55.
[4]
COURCELLE, B. The simultaneous accessibility of two configurations of two equivalent DPDAs. Inf. Proc. Lett. 12 (1981), 111-114.
[5]
COURCELLE, B. An axiomatic approach to the Korenjak-Hopcroft algorithms. Math. Syst. Theory 16 (1983), 191-231.
[6]
FRIEDMAN, E. P. Equivalence problems for deterministic context-free languages and monadic recursion schemes. J. Comput. Syst. Sci. 14 (1977), 344-359.
[7]
FRIEDMAN, E. e., AND GREIBACH, S.A. Superdeterministic DPDAs: The method of accepting does affect decision problems. 3. Comput. Syst. Sci. 19 (1979), 79-117.
[8]
FRIEDMAN, E. P., AND GREIBACH, S.A. A polynomial time algorithm for deciding the equivalence problem for 2-tape deterministic finite state acceptors. SIAM J. Comput. 11 (1982), 166-183.
[9]
HARRISON, M. A., AND HAVEL, I.i. Real-time strict deterministic languages. SIAM J. Comput. 1 (1972), 333-349.
[10]
HARRISON, M. A., HAVEL, I. M., AND YEHUDAI, A. On equivalence of grammars through transformation trees. Theoret. Comput Sci. 9 (1979), 173-205.
[11]
ITZHAIK, Y., AND YEHUDAI, A. A decision procedure for the equivalence of two DPDAs, one of which is linear. In Lecture Notes in Computer Science, vol. I 15. Springer-Verlag, New York, 198 l, 229-237.
[12]
KATAYAMA, T., TSUCmVA, N., AND ENOMOTO, H. On the decidability of equivalence for deterministic pushdown transducers. Trans. IECE Japan 58-D (1975), 760-767.
[13]
KORENJAK, A. J., AND HOPCROFT, J. E. Simple deterministic languages. In Proceedings of the IEEE 7th Symposium on Switching and Automata Theory. IEEE, New York, 1966, pp. 36-46.
[14]
LINNA, M. Two decidability results for deterministic pushdown automata. 3. Comput. Syst. Sci. 18 (1979), 92-107.
[15]
OYAMAGUCHI, M., AND HONDA, N. The decidability of equivalence for deterministic stateless pushdown automata. Inf. Control 38 (1978), 367-376.
[16]
OYAMAGUCHI, M., INAGAKI, Y., AND HONDA, N. The equivalence problem for real-time strict deterministic languages. Inf. Control 45 (1980), 90-115.
[17]
OYAMAGUCHI, M., INAGAKI, Y., AND HONDA, N. On the equivalence problem for two dpda's, one of which is real-time. Inf. Proc. 80 (1980), 53-57.
[18]
OYAMAGUCHI, M., INAGAKI, Y., AND HONDA, N. The equivalence problem for two dpda's, one of which is a finite-turn or one-counter machine. J. Comput. Syst. Sci. 23 (1981), 366-382.
[19]
ROSENKRANTZ, n. Z., AND STEARNS, R.E. Properties of deterministic topdown grammars. Inf. Control 17 (1970), 226-256.
[20]
SEKIMOTO, S. An extended result on the equivalence problem for LR machines taking monotonous -moves. Trans. IECE Japan 64-D ( 1981), 419-426.
[21]
SEKIMOTO, S. On the equivalence problem for deterministic finite-turn pushdown automata. Trans. IECE Japan 64-D (1981), 463-470.
[22]
TANIGUCHI, K., AND KASAMI, T. A result on the equivalence problem for deterministic pushdown automata. J. Comput. Syst. Sci. 13 (1976), 38-50.
[23]
TOMITA, E. A direct branching algorithm for checking equivalence of some classes of deterministic pushdown automata. Inf. Control 52 (1982), 187-238.
[24]
TOMITA, E. An extended direct branching algorithm for checking equivalence of deterministic pushdown automata. Theoret. Comput. Sci. 32 (1984), 87-120.
[25]
UKKONEN, E. The equivalence problem for some non-real-time deterministic pushdown automata. J. ACM 29, 4 (Oct. 1982), 1 t66-1181.
[26]
VALIANT, L.G. Decision procedures for families of deterministic pushdown automata. Ph.D. dissertation, Univ. of Warwick, Warwick, England, July 1973.
[27]
VALIANT, L.G. The equivalence problem for deterministic finite-turn pushdown automata. Inf. Control 25 (1974), 123-133.
[28]
VALIANT, L. G., AND PATERSON, M.S. Deterministic one counter automata. J. Comput. Syst. Sci. lO (1975), 340-350.
[29]
YEHUDAI, A. A hierarchy of real-time deterministic languages and their equivalence. 3. Comput. Syst. Sci. 24 (1982), 91-100.

Cited By

View all
  • (2021)Efficient Equivalence Checking Technique for Some Classes of Finite-State MachinesAutomatic Control and Computer Sciences10.3103/S014641162107018X55:7(670-701)Online publication date: 1-Dec-2021
  • (2020)Efficient Equivalence Checking Technique for Some Classes of Finite-State MachinesModeling and Analysis of Information Systems10.18255/1818-1015-2020-3-260-30327:3(260-303)Online publication date: 21-Sep-2020
  • (2013)Equivalence of deterministic one-counter automata is NL-completeProceedings of the forty-fifth annual ACM symposium on Theory of Computing10.1145/2488608.2488626(131-140)Online publication date: 1-Jun-2013
  • Show More Cited By

Recommendations

Reviews

Kazem Taghva

The decidability of the equivalence problem for the deterministic pushdown automata (DPDA) has been an important unresolved problem of language theory over the last three decades. A great deal of research has been focused on resolving this problem for the proper subclasses of DPDAs. A notable example is the decidability of the equivalence problem for LL(k) grammars [1]. Two of the well-known techniques for establishing positive results in these subclasses are Valiant's alternate stacking and parallel stacking [2]. In this paper, the author uses the parallel stacking technique to show that the equivalence problem for the real-time DPDAs (a real-time DPDA is a DPDA with no &egr;-move) is decidable. In addition, it is proved that the equivalence problem for two DPDAs is decidable if one of them is real-time. The paper is carefully written and contains some new ideas on the parallel stacking technique.

Access critical reviews of Computing literature here

Become a reviewer for Computing Reviews.

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of the ACM
Journal of the ACM  Volume 34, Issue 3
July 1987
248 pages
ISSN:0004-5411
EISSN:1557-735X
DOI:10.1145/28869
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 July 1987
Published in JACM Volume 34, Issue 3

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)155
  • Downloads (Last 6 weeks)7
Reflects downloads up to 21 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2021)Efficient Equivalence Checking Technique for Some Classes of Finite-State MachinesAutomatic Control and Computer Sciences10.3103/S014641162107018X55:7(670-701)Online publication date: 1-Dec-2021
  • (2020)Efficient Equivalence Checking Technique for Some Classes of Finite-State MachinesModeling and Analysis of Information Systems10.18255/1818-1015-2020-3-260-30327:3(260-303)Online publication date: 21-Sep-2020
  • (2013)Equivalence of deterministic one-counter automata is NL-completeProceedings of the forty-fifth annual ACM symposium on Theory of Computing10.1145/2488608.2488626(131-140)Online publication date: 1-Jun-2013
  • (2011)Language equivalence of deterministic real-time one-counter automata is NL-completeProceedings of the 36th international conference on Mathematical foundations of computer science10.5555/2034006.2034028(194-205)Online publication date: 22-Aug-2011
  • (2011)Language Equivalence of Deterministic Real-Time One-Counter Automata Is NL-CompleteMathematical Foundations of Computer Science 201110.1007/978-3-642-22993-0_20(194-205)Online publication date: 2011
  • (2007)Equivalence of deterministic pushdown automata revisitedCybernetics and Systems Analysis10.1007/s10559-007-0037-743:2(179-191)Online publication date: 1-Mar-2007
  • (2005)The Bisimulation Problem for Equational Graphs of Finite Out-DegreeSIAM Journal on Computing10.1137/S009753970037725634:5(1025-1106)Online publication date: Jan-2005
  • (2005)The equivalence problem for deterministic pushdown automata is decidableAutomata, Languages and Programming10.1007/3-540-63165-8_221(671-681)Online publication date: 8-Jun-2005
  • (2005)New techniques for proving the decidability of equivalence problemsAutomata, Languages and Programming10.1007/3-540-19488-6_114(162-175)Online publication date: 31-May-2005
  • (2002)L(A)=L(B)? A simplified decidability proofTheoretical Computer Science10.5555/2780683.2780843281:1(555-608)Online publication date: 3-Jun-2002
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media