[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2872362.2872384acmconferencesArticle/Chapter ViewAbstractPublication PagesasplosConference Proceedingsconference-collections
research-article

TxRace: Efficient Data Race Detection Using Commodity Hardware Transactional Memory

Published: 25 March 2016 Publication History

Abstract

Detecting data races is important for debugging shared-memory multithreaded programs, but the high runtime overhead prevents the wide use of dynamic data race detectors. This paper presents TxRace, a new software data race detector that leverages commodity hardware transactional memory (HTM) to speed up data race detection. TxRace instruments a multithreaded program to transform synchronization-free regions into transactions, and exploits the conflict detection mechanism of HTM for lightweight data race detection at runtime. However, the limitations of the current best-effort commodity HTMs expose several challenges in using them for data race detection: (1) lack of ability to pinpoint racy instructions, (2) false positives caused by cache line granularity of conflict detection, and (3) transactional aborts for non-conflict reasons (e.g., capacity or unknown). To overcome these challenges, TxRace performs lightweight HTM-based data race detection at first, and occasionally switches to slow yet precise data race detection only for the small fraction of execution intervals in which potential races are reported by HTM. According to the experimental results, TxRace reduces the average runtime overhead of dynamic data race detection from 11.68x to 4.65x with only a small number of false negatives.

References

[1]
The apache http server. http://httpd.apache.org.
[2]
Y. Afek, A. Levy, and A. Morrison. Software-improved hardware lock elision. In Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing, PODC '14, pages 212--221, 2014. ISBN 978--1--4503--2944--6.
[3]
C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark Suite: Characterization and Architectural Implications. In Proc. of the 17th PACT, Oct. 2008.
[4]
C. Bishop et al. Pattern recognition and machine learning. Springer New York:, 2006.
[5]
Biswas, Zhang, Bond, and Lucia]Biswas15S. Biswas, M. Zhang, M. D. Bond, and B. Lucia. Efficient, software-only data race exceptions. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA '15, 2015\natexlaba.
[6]
Biswas, Zhang, Bond, and Lucia]Biswas15valorS. Biswas, M. Zhang, M. D. Bond, and B. Lucia. Valor: Efficient, software-only region conflict exceptions. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015, pages 241--259, 2015\natexlabb. ISBN 978--1--4503--3689--5.
[7]
J. Bobba, K. E. Moore, H. Volos, L. Yen, M. D. Hill, M. M. Swift, and D. A. Wood. Performance pathologies in hardware transactional memory. In Proceedings of the 34th Annual International Symposium on Computer Architecture, ISCA '07, pages 81--91, 2007. ISBN 978--1--59593--706--3.
[8]
H.-J. Boehm and S. V. Adve. Foundations of the c+ concurrency memory model. In Proceedings of the 2008 ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI '08, pages 68--78, 2008.
[9]
M. D. Bond, K. E. Coons, and K. S. McKinley. Pacer: Proportional detection of data races. In Proceedings of the 2010 ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI '10, pages 255--268, 2010. ISBN 978--1--4503-0019--3.
[10]
D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure for adaptive dynamic optimization. In Proceedings of the International Symposium on Code Generation and Optimization: Feedback-directed and Runtime Optimization, CGO '03, pages 265--275, 2003. ISBN 0--7695--1913-X.
[11]
I. Calciu, J. Gottschlich, T. Shpeisman, G. Pokam, and M. Herlihy. Invyswell: A hybrid transactional memory for haswell's restricted transactional memory. In Proceedings of the 23rd International Conference on Parallel Architectures and Compilation, PACT '14, pages 187--200, 2014.
[12]
L. Chew and D. Lie. Kivati: Fast detection and prevention of atomicity violations. In Proceedings of the 5th European Conference on Computer Systems, EuroSys '10, pages 307--320, 2010. ISBN 978--1--60558--577--2.
[13]
J.-D. Choi, K. Lee, A. Loginov, R. O'Callahan, V. Sarkar, and M. Sridharan. Efficient and precise datarace detection for multithreaded object-oriented programs. In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design and Implementation, PLDI '02, pages 258--269, 2002. ISBN 1--58113--463-0.
[14]
C. Click. Azuls experiences with hardware transactional memory. In In HP Labs - Bay Area Workshop on Transactional Memory, 2009.
[15]
L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. L. Scott, and M. F. Spear. Hybrid norec: A case study in the effectiveness of best effort hardware transactional memory. In Proceedings of the Sixteenth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS XVI, pages 39--52, 2011. ISBN 978--1--4503-0266--1.
[16]
J. Devietti, B. P. Wood, K. Strauss, L. Ceze, D. Grossman, and S. Qadeer. Radish: Always-on sound and complete ra detection in software and hardware. In Proceedings of the 39th Annual International Symposium on Computer Architecture, ISCA '12, pages 201--212, 2012. ISBN 978--1--4503--1642--2.
[17]
D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early experience with a commercial hardware transactional memory implementation. In Proceedings of the 14th International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS XIV, pages 157--168, 2009. ISBN 978--1--60558--406--5.
[18]
L. Effinger-Dean, B. Lucia, L. Ceze, D. Grossman, and H.-J. Boehm. Ifrit: Interference-free regions for dynamic data-race detection. In Proceedings of the ACM International Conference on Object Oriented Programming Systems Languages and Applications, OOPSLA '12, pages 467--484, 2012. ISBN 978--1--4503--1561--6.
[19]
T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A race and transaction-aware java runtime. In Proceedings of the 2007 ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI '07, pages 245--255, 2007. ISBN 978--1--59593--633--2.
[20]
J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk. Effective data-race detection for the kernel. In In Proceedings of the 9th USENIX conference on Operating systems design and implementation, OSDI '10, 2010.
[21]
C. Flanagan and S. N. Freund. Fasttrack: Efficient and precise dynamic race detection. In Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI '09, pages 121--133, 2009. ISBN 978--1--60558--392--1.
[22]
C. Flanagan, S. N. Freund, and J. Yi. Velodrome: A sound and complete dynamic atomicity checker for multithreaded programs. In Proceedings of the 29th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI '08, pages 293--303, 2008. ISBN 978--1--59593--860--2.
[23]
B. Goel, R. Titos-Gil, A. Negi, S. A. McKee, and P. Stenstrom. Performance and energy analysis of the restricted transactional memory implementation on haswell. In Proceedings of the 2014 IEEE 28th International Parallel and Distributed Processing Symposium, IPDPS '14, pages 615--624, Washington, DC, USA, 2014. ISBN 978--1--4799--3800--1.
[24]
J. L. Greathouse, Z. Ma, M. I. Frank, R. Peri, and T. Austin. Demand-driven software race detection using hardware performance counters. In Proceedings of the 38th Annual International Symposium on Computer Architecture, ISCA '11, pages 165--176, 2011. ISBN 978--1--4503-0472--6.
[25]
S. Gupta, F. Sultan, S. Cadambi, F. Ivancic, and M. Roetteler. Racetm: Detecting data races using transactional memory. In Proceedings of the Twentieth Annual Symposium on Parallelism in Algorithms and Architectures, SPAA '08, pages 104--106, 2008. ISBN 978--1--59593--973--9.
[26]
R. Haring, M. Ohmacht, T. Fox, M. Gschwind, D. Satterfield, K. Sugavanam, P. Coteus, P. Heidelberger, M. Blumrich, R. Wisniewski, a. gara, G. Chiu, P. Boyle, N. Chist, and C. Kim. The ibm blue gene/q compute chip. IEEE Micro, 32 (2): 48--60, Mar. 2012. ISSN 0272--1732.
[27]
W. Hasenplaugh, A. Nguyen, and N. Shavit. Quantifying the capacity limitations of hardware transactional memory. In WTTM '15: 7th Workshop on the Theory of Transactional Memory, July 2015.
[28]
M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for lock-free data structures. In Proceedings of the 20th Annual International Symposium on Computer Architecture, ISCA '93, pages 289--300, 1993. ISBN 0--8186--3810--9.
[29]
Intel. Intel architecture instruction set extensions programming reference. chapter 8: Intel transactional synchronization extensions, 2012. https://software.intel.com/sites/default/files/m/9/2/3/41604.
[30]
Intel. Intel 64 and ia-32 architectures software developers manual, 2013. http://download.intel.com/products/processor/manual/325462.pdf.
[31]
Intel. Intel 64 and ia-32 architectures optimization reference manual. chapter 12: Intel tsx recommendations, 2014. http://www.intel.com/content/dam/www/public/us/en/ documents/manuals/64-ia-32-architectures-optimization-manual.pdf.
[32]
Intel. Intel inspector xe, 2015. http://software.intel.com/en-us/intel-inspector-xe.
[33]
International Organization for Standardization. ISO/IEC 14882:2011: Information technology -- Programming languages -- C+, 2011.
[34]
International Organization for Standardization. ISO/IEC 9899:2011: Information technology -- Programming languages -- C, 2011.
[35]
C. Jacobi, T. Slegel, and D. Greiner. Transactional memory architecture and implementation for ibm system z. In Proceedings of the 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-45, pages 25--36, 2012. ISBN 978-0--7695--4924--8.
[36]
C. Jung, S. Lee, E. Raman, and S. Pande. Automated memory leak detection for production use. In Proceedings of the 36th International Conference on Software Engineering, 2014.
[37]
B. Kasikci, C. Zamfir, and G. Candea. Racemob: Crowdsourced data race detection. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP '13, pages 406--422, 2013. ISBN 978--1--4503--2388--8.
[38]
K. Kelsey, T. Bai, C. Ding, and C. Zhang. Fast track: A software system for speculative program optimization. In Proceedings of the 7th Annual IEEE/ACM International Symposium on Code Generation and Optimization, CGO '09, pages 157--168, 2009. ISBN 978-0--7695--3576-0.
[39]
C. Lattner and V. Adve. Llvm: A compilation framework for lifelong program analysis & transformation. In Proceedings of the International Symposium on Code Generation and Optimization: Feedback-directed and Runtime Optimization, CGO '04, pages 75--, 2004. ISBN 0--7695--2102--9.
[40]
D. Lee, M. Said, S. Narayanasamy, Z. Yang, and C. Pereira. Offline symbolic analysis for multi-processor execution replay. In Proceedings of the 42Nd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 42, pages 564--575, 2009. ISBN 978--1--60558--798--1.
[41]
D. Lee, M. Said, S. Narayanasamy, and Z. Yang. Offline symbolic analysis to infer total store order. In Proceedings of the 2011 IEEE 17th International Symposium on High Performance Computer Architecture, HPCA '11, pages 357--358, 2011. ISBN 978--1--4244--9432--3.
[42]
D. Lee, P. M. Chen, J. Flinn, and S. Narayanasamy. Chimera: Hybrid program analysis for determinism. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI '12, pages 463--474, 2012. ISBN 978--1--4503--1205--9.
[43]
S. Lee, C. Jung, and S. Pande. Detecting memory leaks through introspective dynamic behavior modelling using machine learning. In Proceedings of the 36th International Conference on Software Engineering, 2014.
[44]
Y. Lev, M. Moir, and D. Nussbaum. Ph™: Phased transactional memory. In TRANSACT '07: 2nd Workshop on Transactional Computing, aug 2007.
[45]
Y. Liu, Y. Xia, H. Guan, B. Zang, and H. Chen. Concurrent and consistent virtual machine introspection with hardware transactional memory. In Proceedings of the 2014 IEEE 20th International Symposium on High Performance Computer Architecture, HPCA '14, 2014.
[46]
S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: A comprehensive study on real world concurrency bug characteristics. In Proceedings of the 13th International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS XIII, pages 329--339, 2008. ISBN 978--1--59593--958--6.
[47]
B. Lucia, L. Ceze, K. Strauss, S. Qadeer, and H.-J. Boehm. Conflict exceptions: Simplifying concurrent language semantics with precise hardware exceptions for data-races. In Proceedings of the 37th Annual International Symposium on Computer Architecture, ISCA '10, pages 210--221, 2010. ISBN 978--1--4503-0053--7.
[48]
C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building customized program analysis tools with dynamic instrumentation. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI '05, pages 190--200, 2005. ISBN 1--59593-056--6.
[49]
J. Manson, W. Pugh, and S. V. Adve. The java memory model. In Proceedings of the 32Nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL '05, pages 378--391, 2005. ISBN 1--58113--830-X.
[50]
D. Marino, M. Musuvathi, and S. Narayanasamy. Literace: Effective sampling for lightweight data-race detection. In Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI '09, pages 134--143, 2009. ISBN 978--1--60558--392--1.
[51]
M. Martin, C. Blundell, and E. Lewis. Subtleties of transactional memory atomicity semantics. IEEE Comput. Archit. Lett., 5 (2): 17--17, July 2006. ISSN 1556--6056.
[52]
H. S. Matar, I. Kuru, S. Tasiran, and R. Dementiev. Accelerating precise race detection using commercially available hardware transactional memory support. In 5th Workshop on Determinism and Correctness in Parallel Programming, WoDet '14, 2014.
[53]
K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood. Log™: Log-based transactional memory. In Proceedings of the 2006 IEEE 12th International Symposium on High Performance Computer Architecture, pages 254--265, Feb. 2006.
[54]
z, Qi, and Torrellas]Muzahid09A. Muzahid, D. Suárez, S. Qi, and J. Torrellas. Sigrace: Signature-based data race detection. In Proceedings of the 36th Annual International Symposium on Computer Architecture, ISCA '09, pages 337--348, 2009.
[55]
N. Nethercote and J. Seward. Valgrind: A framework for heavyweight dynamic binary instrumentation. In Proceedings of the 2007 ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI '07, pages 89--100, 2007. ISBN 978--1--59593--633--2.
[56]
R. H. B. Netzer and B. P. Miller. What are race conditions?: Some issues and formalizations. ACM Lett. Program. Lang. Syst., 1 (1): 74--88, Mar. 1992. ISSN 1057--4514.
[57]
PCWorld. Nasdaq's facebook glitch came from race conditions, May 2012. http://www.pcworld.com/article/255911/nasdaqs_facebook_glitch_came_from_race_conditions.html.
[58]
E. Pozniansky and A. Schuster. Multirace: Efficient on-the-fly data race detection in multithreaded c+ programs: Research articles. Concurr. Comput. : Pract. Exper., 19 (3): 327--340, Mar. 2007. ISSN 1532-0626.
[59]
M. Prvulovic. Cord: Cost-effective (and nearly overhead-free) order-recording and data race detection. In Proceedings of the 2006 IEEE 12th International Symposium on High Performance Computer Architecture, HPCA '06, 2006.
[60]
M. Prvulovic and J. Torrellas. Reenact: Using thread-level speculation mechanisms to debug data races in multithreaded codes. In Proceedings of the 30th Annual International Symposium on Computer Architecture, ISCA '03, pages 110--121, 2003. ISBN 0--7695--1945--8.
[61]
C. G. Ritson and F. R. Barnes. An evaluation of intel's restricted transactional memory for cpas, 2013.
[62]
P. Sack, B. E. Bliss, Z. Ma, P. Petersen, and J. Torrellas. Accurate and efficient filtering for the intel thread checker race detector. In Proceedings of the 1st Workshop on Architectural and System Support for Improving Software Dependability, ASID '06, pages 34--41, 2006. ISBN 1--59593--576--2.
[63]
S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A dynamic data race detector for multithreaded programs. ACM Trans. Comput. Syst., 15 (4): 391--411, Nov. 1997. ISSN 0734--2071.
[64]
SecurityFocus. Software bug contributed to blackout, Feb. 2004. http://www.securityfocus.com/news/8016.
[65]
K. Serebryany and T. Iskhodzhanov. Threadsanitizer: Data race detection in practice. In Proceedings of the Workshop on Binary Instrumentation and Applications, WBIA '09, pages 62--71, 2009. ISBN 978--1--60558--793--6.
[66]
Y. Smaragdakis, J. Evans, C. Sadowski, J. Yi, and C. Flanagan. Sound predictive race detection in polynomial time. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL '12, pages 387--400, 2012. ISBN 978--1--4503--1083--3.
[67]
M. Susskraut, T. Knauth, S. Weigert, U. Schiffel, M. Meinhold, and C. Fetzer. Prospect: A compiler framework for speculative parallelization. In Proceedings of the 8th Annual IEEE/ACM International Symposium on Code Generation and Optimization, CGO '10, pages 131--140, 2010.
[68]
T. C. Team. Clang 3.8 threadsanitizer, 2015. http://clang.llvm.org/docs/ThreadSanitizer.html.
[69]
J. Sevcık and D. Aspinall. On validity of program transformations in the java memory model. In Proceedings of the 22Nd European Conference on Object-Oriented Programming, ECOOP '08, pages 27--51, 2008. ISBN 978--3--540--70591--8.
[70]
B. Wester, D. Devecsery, P. M. Chen, J. Flinn, and S. Narayanasamy. Parallelizing data race detection. In Proceedings of the Eighteenth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS '13, pages 27--38, 2013. ISBN 978--1--4503--1870--9.
[71]
R. Wilcox. Introduction to Robust Estimation and Hypothesis Testing. Elsevier Science & Technology, 2012. ISBN 9780123869838.
[72]
Y. Xie, M. Naik, B. Hackett, and A. Aiken. Soundness and its role in bug detection systems. In In Proceedings of the Workshop on the Evaluation of Software Defect Detection Tools, 2005.
[73]
J. Yang, A. Cui, S. Stolfo, and S. Sethumadhavan. Concurrency attacks. In The 4th USENIX Workshop on Hot Topics in Parallelism, Berkeley, CA, 2012. USENIX. URL https://www.usenix.org/conference/ hotpar12/concurrency-attacks.
[74]
R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar. Performance evaluation of intel® transactional synchronization extensions for high-performance computing. In Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC '13, pages 19:1--19:11, 2013. ISBN 978--1--4503--2378--9.
[75]
Y. Yu, T. Rodeheffer, and W. Chen. Racetrack: Efficient detection of data race conditions via adaptive tracking. In Proceedings of the Twentieth ACM Symposium on Operating Systems Principles, SOSP '05, pages 221--234, 2005. ISBN 1--59593-079--5.
[76]
P. Zhou, R. Teodorescu, and Y. Zhou. Hard: Hardware-assisted lockset-based race detection. In Proceedings of the 2007 IEEE 13th International Symposium on High Performance Computer Architecture, HPCA '07, pages 121--132, 2007. ISBN 1--4244-0804-0.

Cited By

View all
  • (2024)OZZ: Identifying Kernel Out-of-Order Concurrency Bugs with In-Vivo Memory Access ReorderingProceedings of the ACM SIGOPS 30th Symposium on Operating Systems Principles10.1145/3694715.3695944(229-248)Online publication date: 4-Nov-2024
  • (2023)Diagnosing Kernel Concurrency Failures with AITIAProceedings of the Eighteenth European Conference on Computer Systems10.1145/3552326.3567486(94-110)Online publication date: 8-May-2023
  • (2023)SegFuzz: Segmentizing Thread Interleaving to Discover Kernel Concurrency Bugs through Fuzzing2023 IEEE Symposium on Security and Privacy (SP)10.1109/SP46215.2023.10179398(2104-2121)Online publication date: May-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
ASPLOS '16: Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and Operating Systems
March 2016
824 pages
ISBN:9781450340915
DOI:10.1145/2872362
  • General Chair:
  • Tom Conte,
  • Program Chair:
  • Yuanyuan Zhou
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 25 March 2016

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. concurrency bug detection
  2. data race
  3. dynamic program analysis
  4. hardware transactional memory

Qualifiers

  • Research-article

Funding Sources

Conference

ASPLOS '16

Acceptance Rates

ASPLOS '16 Paper Acceptance Rate 53 of 232 submissions, 23%;
Overall Acceptance Rate 535 of 2,713 submissions, 20%

Upcoming Conference

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)12
  • Downloads (Last 6 weeks)0
Reflects downloads up to 11 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)OZZ: Identifying Kernel Out-of-Order Concurrency Bugs with In-Vivo Memory Access ReorderingProceedings of the ACM SIGOPS 30th Symposium on Operating Systems Principles10.1145/3694715.3695944(229-248)Online publication date: 4-Nov-2024
  • (2023)Diagnosing Kernel Concurrency Failures with AITIAProceedings of the Eighteenth European Conference on Computer Systems10.1145/3552326.3567486(94-110)Online publication date: 8-May-2023
  • (2023)SegFuzz: Segmentizing Thread Interleaving to Discover Kernel Concurrency Bugs through Fuzzing2023 IEEE Symposium on Security and Privacy (SP)10.1109/SP46215.2023.10179398(2104-2121)Online publication date: May-2023
  • (2021)Understanding and utilizing hardware transactional memory capacityProceedings of the 2021 ACM SIGPLAN International Symposium on Memory Management10.1145/3459898.3463901(1-14)Online publication date: 22-Jun-2021
  • (2021)Kard: lightweight data race detection with per-thread memory protectionProceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems10.1145/3445814.3446727(647-660)Online publication date: 19-Apr-2021
  • (2020)Logging Inter-Thread Data Dependencies in Linux KernelIEICE Transactions on Information and Systems10.1587/transinf.2019EDP7255E103.D:7(1633-1646)Online publication date: 1-Jul-2020
  • (2019)PUShProceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture10.1145/3352460.3358317(886-898)Online publication date: 12-Oct-2019
  • (2019)Applying Transactional Memory for Concurrency-Bug Failure Recovery in Production RunsIEEE Transactions on Parallel and Distributed Systems10.1109/TPDS.2018.287765630:5(990-1006)Online publication date: 1-May-2019
  • (2019)Razzer: Finding Kernel Race Bugs through Fuzzing2019 IEEE Symposium on Security and Privacy (SP)10.1109/SP.2019.00017(754-768)Online publication date: May-2019
  • (2018)nAdroid: statically detecting ordering violations in Android applicationsProceedings of the 2018 International Symposium on Code Generation and Optimization10.1145/3168829(62-74)Online publication date: 24-Feb-2018
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media