[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Adaptive Body Gesture Representation for Automatic Emotion Recognition

Published: 09 March 2016 Publication History

Abstract

We present a computational model and a system for the automated recognition of emotions starting from full-body movement. Three-dimensional motion data of full-body movements are obtained either from professional optical motion-capture systems (Qualisys) or from low-cost RGB-D sensors (Kinect and Kinect2). A number of features are then automatically extracted at different levels, from kinematics of a single joint to more global expressive features inspired by psychology and humanistic theories (e.g., contraction index, fluidity, and impulsiveness). An abstraction layer based on dictionary learning further processes these movement features to increase the model generality and to deal with intraclass variability, noise, and incomplete information characterizing emotion expression in human movement. The resulting feature vector is the input for a classifier performing real-time automatic emotion recognition based on linear support vector machines. The recognition performance of the proposed model is presented and discussed, including the tradeoff between precision of the tracking measures (we compare the Kinect RGB-D sensor and the Qualisys motion-capture system) versus dimension of the training dataset. The resulting model and system have been successfully applied in the development of serious games for helping autistic children learn to recognize and express emotions by means of their full-body movement.

References

[1]
W. K. Allard, G. Chen, and M. Maggioni. 2012. Multi-scale geometric methods for data sets II: Geometric multi-resolution analysis. Appl. Comput. Harmonic Anal. 32, 3 (2012), 435--462.
[2]
M. Argyle. 2013. Bodily Communication. Routledge, London.
[3]
A. P. Atkinson, W. H. Dittrich, A. J. Gemmell, A. W. Young, and others. 2004. Emotion perception from dynamic and static body expressions in point-light and full-light displays. Perception (London) 33 (2004), 717--746.
[4]
T. Balomenos, A. Raouzaiou, S. Ioannou, A. Drosopoulos, K. Karpouzis, and S. Kollias. 2005. Emotion analysis in man-machine interaction systems. In Machine Learning for Multimodal Interaction. Springer, Berlin, 318--328.
[5]
C. Basso, M. Santoro, A. Verri, and S. Villa. 2011. PADDLE: Proximal algorithm for dual dictionaries learning. In Proceedings of the International Conference on Artificial Neural Networks and Machine Learning (ICANN’11). Springer, Berlin, 379--386.
[6]
R. T. Boone and J. G. Cunningham. 1998. Children’s decoding of emotion in expressive body movement: The development of cue attunement. Dev. Psychol. 34 (1998), 1007--1016.
[7]
P. E. Bull. 1987. Posture and Gesture. Pergamon Press, London.
[8]
A. Camurri. 1995. Interactive dance/music systems. In Proceedings of the 1995 International Computer Music Conference. 245--225.
[9]
A. Camurri, P. Coletta, G. Varni, and S. Ghisio. 2007. Developing multimodal interactive systems with eyesweb XMI. In Proceedings of the Conference on New Interfaces for Musical Expression (NIME), 2007. ACM, New York, NY, 302--305.
[10]
A. Camurri, I. Lagerlöf, and G. Volpe. 2003. Recognizing emotion from dance movement: Comparison of spectator recognition and automated techniques. Int. J. Human-Comput. Stud. 59, 1 (2003), 213--225.
[11]
A. Camurri, B. Mazzarino, and G. Volpe. 2004. Analysis of expressive gesture: The eyesweb expressive gesture processing library. In Gesture-Based Communication in Human-Computer Interaction. Springer, Berlin, 460--467.
[12]
A. Camurri, G. Volpe, G. De Poli, and M. Leman. 2005. Communicating expressiveness and affect in multimodal interactive systems. IEEE Multimedia 12, 1 (2005), 43--53.
[13]
G. Chen and M. Maggioni. 2010. Multiscale geometric wavelets for the analysis of point clouds. In Proceedings of the 44th Annual Conference on Information Sciences and Systems (CISS). IEEE, 1--6.
[14]
R. R. Cornelius. 1996. The Science of Emotion: Research and Tradition in the Psychology of Emotions. Prentice-Hall, Piscataway, NJ.
[15]
R. R. Cornelius. 2000. Theoretical approaches to emotion. In ISCA Tutorial and Research Workshop (ITRW) on Speech and Emotion.
[16]
M. Coulson. 2004. Attributing emotion to static body postures: Recognition accuracy, confusions, and viewpoint dependence. J. Nonverb. Behav. 28, 2 (2004), 117--139.
[17]
R. Cowie, E. Douglas-Cowie, N. Tsapatsoulis, G. Votsis, S. Kollias, W. Fellenz, and J. G. Taylor. 2001. Emotion recognition in human-computer interaction. IEEE Signal Process. Mag. 18, 1 (2001), 32--80.
[18]
B. de Gelder. 2009. Why bodies? Twelve reasons for including bodily expressions in affective neuroscience. Philos. Trans. Roy. Soc. B: Biol. Sci. 364, 1535 (2009), 3475--3484.
[19]
B. de Gelder and N. Hadjikhani. 2006. Non-conscious recognition of emotional body language. Neuroreport 17, 6 (2006), 583--586.
[20]
B. de Gelder, J. Van den Stock, H. K. M. Meeren, C. Sinke, M. E. Kret, and M. Tamietto. 2010. Standing up for the body. Recent progress in uncovering the networks involved in the perception of bodies and bodily expressions. Neurosci. Biobehav. Rev. 34, 4 (2010), 513--527.
[21]
M. de Meijer. 1989. The contribution of general features of body movement to the attribution of emotions. J. Nonverb. Behav. 13, 4 (1989), 247--268.
[22]
W. H. Dittrich, T. Troscianko, S. Lea, and D. Morgan. 1996. Perception of emotion from dynamic point-light displays represented in dance. Perception (London) 25, 6 (1996), 727--738.
[23]
P. Ekman. 1965. Differential communication of affect by head and body cues. J. Person. Soc. Psychol. 2, 5 (1965), 726.
[24]
P. L. Ekman and W. V. Friesen. 1974. Detecting deception from the body or face. J. Person. Soc. Psychol. 29, 3 (1974), 288.
[25]
J. L. Evenden. 1999. Varieties of impulsivity. Psychopharmacology 146, 4 (1999), 348--361.
[26]
T. Flash and N. Hogan. 1985. The coordination of arm movements: An experimentally confirmed mathematical model. J. Neurosci. 5, 7 (1985), 1688--1703.
[27]
D. Glowinski, N. Dael, A. Camurri, G. Volpe, M. Mortillaro, and K. Scherer. 2011. Toward a minimal representation of affective gestures. IEEE Trans. Affect. Comput. 2, 2 (2011), 106--118.
[28]
O. Golan, E. Ashwin, Y. Granader, S. McClintock, K. Day, V. Leggett, and S. Baron-Cohen. 2010. Enhancing emotion recognition in children with autism spectrum conditions: An intervention using animated vehicles with real emotional faces. J. Autism Dev. Disorders 40, 3 (2010), 269--279.
[29]
O. Golan, S. Baron-Cohen, and J. Hill. 2006. The Cambridge mindreading (CAM) face-voice battery: Testing complex emotion recognition in adults with and without Asperger syndrome. J. Autism Dev. Disorders 36, 2 (2006), 169--183.
[30]
P. Heiser, J. Frey, J. Smidt, C. Sommerlad, P. M. Wehmeier, J. Hebebrand, and H. Remschmidt. 2004. Objective measurement of hyperactivity, impulsivity, and inattention in children with hyperkinetic disorders before and after treatment with methylphenidate. Eur. Child Adolescent Psychiat. 13, 2 (2004), 100--104.
[31]
H. Hill and F. E. Pollick. 2000. Exaggerating temporal differences enhances recognition of individuals from point light displays. Psychol. Sci. 11, 3 (2000), 223--228.
[32]
B. R. Hoff. 1992. A Computational Description of the Organization of Human Reaching and Prehension. Ph.D. Dissertation. University of Southern California.
[33]
N. Hogan. 1984. An organizing principle for a class of voluntary movements. J. Neurosci. 4, 11 (1984), 2745--2754.
[34]
G. Johansson. 1973. Visual perception of biological motion and a model for its analysis. Perception & Psychophysics 14, 2 (1973), 201--211.
[35]
A. Kapoor, W. Burleson, and R. W. Picard. 2007. Automatic prediction of frustration. Int. J. Human-Comput. Stud. 65, 8 (2007), 724--736.
[36]
A. Kapur, A. Kapur, N. Virji-Babul, G. Tzanetakis, and P. F. Driessen. 2005. Gesture-based affective computing on motion capture data. In Affective Computing and Intelligent Interaction. Springer, Berlin, 1--7.
[37]
M. Karg, A. Samadani, R. Gorbet, K. Kuhnlenz, J. Hoey, and D. Kulic. 2013. Body movements for affective expression: A survey of automatic recognition and generation. IEEE Trans. Affect. Comput. 4, 4 (2013), 341--359.
[38]
A. Klautau, N. Jevtic, and A. Orlitsky. 2002. Combined binary classifiers with applications to speech recognition. In Proceedings of the Annual Conference of the International Speech Communication Association (INTERSPEECH).
[39]
Kinect. 2013. Kinect for Windows. Retrieved from http://www.microsoft.com/en-us/kinectforwindows/.
[40]
A. Kleinsmith and N. Bianchi-Berthouze. 2013. Affective body expression perception and recognition: A survey. IEEE Trans. Affect. Comput. 4, 1 (2013), 15--33.
[41]
R. Laban. 1963. Modern Educational Dance. Macdonald & Evans, London.
[42]
R. Laban and F. C. Lawrence. 1947. Effort. Macdonald & Evans, London.
[43]
H. Lee, A. Battle, R. Raina, and A. Ng. 2006. Efficient sparse coding algorithms. In Advances in Neural Information Processing Systems. 801--808.
[44]
Y. Ma, H. M. Paterson, and F. E. Pollick. 2006. A motion capture library for the study of identity, gender, and emotion perception from biological motion. Beh. Res. Methods 38, 1 (2006), 134--141.
[45]
J. Mairal, F. Bach, J. Ponce, and G. Sapiro. 2010. Online learning for matrix factorization and sparse coding. J. Machine Learn. Res. 11 (2010), 19--60.
[46]
B. Mazzarino and M. Mancini. 2009. The need for impulsivity & smoothness-improving HCI by qualitatively measuring new high-level human motion features. In Proceedings of the International Conference on Signal Processing and Multimedia Applications (SIGMAP). 62--67.
[47]
J. T. McConville, C. E. Clauser, T. D. Churchill, J. Cuzzi, and I. Kaleps. 1980. Anthropometric Relationships of Body and Body Segment Moments of Inertia. Technical Report. DTIC Document.
[48]
C. T. Nagoshi, J. R. Wilson, and L. A. Rodriguez. 2006. Impulsivity, sensation seeking, and behavioral and emotional responses to alcohol. Alcohol. Clin. Exp. Res. 15, 4 (2006), 661--667.
[49]
N. Noceti and F. Odone. 2012. Learning common behaviors from large sets of unlabeled temporal series. Image and Vision Computing 30, 11 (2012), 875--895.
[50]
N. Noceti, M. Santoro, and F. Odone. 2011. Learning behavioral patterns of time series for video-surveillance. In Machine Learning for Vision-Based Motion Analysis. Springer, Berlin, 275--304.
[51]
H. O’Reilly, D. Pigat, S. Berggren, S. Fridenson, S. Tal, O. Golan, S. Bolte, S. Baron-Cohen, and D. Lundqvist. 2014. The EU-Emotion Stimulus Set: A Validation Study. Retrieved from http://www. autismresearchcentre.com/projects/Emoticons.aspx.
[52]
S. Piana, A. Staglianò, F. Odone, and A. Camurri. 2014a. Emotional charades. In Proceedings of the 16th ACM International Conference on Multimodal Interaction (ICMI).
[53]
S. Piana, A. Staglianò, F. Odone, A. Verri, and A. Camurri. 2014b. Real-time automatic emotion recognition from body gestures. arXiv:1402.5047 (2014).
[54]
S. Piana, A. Staglianò, S. Semino, F. Odone, C. Usai, and A. Camurri. 2015. Evaluation of the emotional game for ASC children. (2015). In preparation (2015).
[55]
F. E. Pollick, H. M. Paterson, A. Bruderlin, and A. J. Sanford. 2001. Perceiving affect from arm movement. Cognition 82, 2 (2001), B51--B61.
[56]
Qualisys. 2013. Qualisys Motion Capture Systems. Retrieved from http://www.Qualisys.com.
[57]
C. L. Roether, L. Omlor, and M. A. Giese. 2008. Lateral asymmetry of bodily emotion expression. Curr. Biol. 18, 8 (2008), R329--R330.
[58]
R. Rubinstein, A. M. Bruckstein, and M. Elad. 2010. Dictionaries for sparse representation modeling. Proc. IEEE 98, 6 (2010), 1045--1057.
[59]
B. Schuller, E. Marchi, S. Baron-Cohen, H. O’Reilly, P. Robinson, I. Davies, O. Golan, S. Fridenson, S. Tal, S. Newman, N. Meir, R. Shillo, A. Camurri, S. Piana, S. Bölte, D. Lundqvist, S. Berggren, A. Baranger, and N. Sullings. 2013. ASC-inclusion: Interactive emotion games for social inclusion of children with autism spectrum conditions. In Proceedings of the 1st International Workshop on Intelligent Digital Games for Empowerment and Inclusion (IDGEI’13) held in conjunction with the 8th Foundations of Digital Games 2013 (FDG), B. Schuller, L. Paletta, and N. Sabouret (Eds.). ACM, SASDG (Chania, Greece, May 2013).
[60]
W. A. Sethares and T. W. Staley. 1999. Periodicity transforms. IEEE Trans. Signal Process. 47, 11 (1999), 2953--2964.
[61]
E. Todorov and M. I. Jordan. 1998. Smoothness maximization along a predefined path accurately predicts the speed profiles of complex arm movements. J. Neurophysiol. 80, 2 (1998), 696--714.
[62]
V. Vapnik. 1998. Statistical Learning Theory. Wiley, New York, NY.
[63]
H. G. Wallbott. 1998. Bodily expression of emotion. Eur. J. Soc. Psychol. 28, 6 (1998), 879--896.

Cited By

View all
  • (2024)Online Multi-level Contrastive Representation Distillation for Cross-Subject fNIRS Emotion RecognitionProceedings of the 1st International Workshop on Brain-Computer Interfaces (BCI) for Multimedia Understanding10.1145/3688862.3689110(29-37)Online publication date: 28-Oct-2024
  • (2024)Diffusion-Based Unsupervised Pre-training for Automated Recognition of Vitality FormsProceedings of the 2024 International Conference on Advanced Visual Interfaces10.1145/3656650.3656689(1-9)Online publication date: 3-Jun-2024
  • (2024)Towards Estimating Missing Emotion Self-reports Leveraging User Similarity: A Multi-task Learning ApproachProceedings of the 2024 CHI Conference on Human Factors in Computing Systems10.1145/3613904.3642833(1-19)Online publication date: 11-May-2024
  • Show More Cited By

Index Terms

  1. Adaptive Body Gesture Representation for Automatic Emotion Recognition

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Interactive Intelligent Systems
    ACM Transactions on Interactive Intelligent Systems  Volume 6, Issue 1
    Special Issue on New Directions in Eye Gaze for Interactive Intelligent Systems (Part 2 of 2), Regular Articles and Special Issue on Highlights of IUI 2015 (Part 1 of 2)
    May 2016
    219 pages
    ISSN:2160-6455
    EISSN:2160-6463
    DOI:10.1145/2896319
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 09 March 2016
    Accepted: 01 November 2015
    Revised: 01 September 2015
    Received: 01 December 2014
    Published in TIIS Volume 6, Issue 1

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Body
    2. automatic emotion recognition
    3. dictionary learning
    4. motion capture

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)118
    • Downloads (Last 6 weeks)16
    Reflects downloads up to 14 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Online Multi-level Contrastive Representation Distillation for Cross-Subject fNIRS Emotion RecognitionProceedings of the 1st International Workshop on Brain-Computer Interfaces (BCI) for Multimedia Understanding10.1145/3688862.3689110(29-37)Online publication date: 28-Oct-2024
    • (2024)Diffusion-Based Unsupervised Pre-training for Automated Recognition of Vitality FormsProceedings of the 2024 International Conference on Advanced Visual Interfaces10.1145/3656650.3656689(1-9)Online publication date: 3-Jun-2024
    • (2024)Towards Estimating Missing Emotion Self-reports Leveraging User Similarity: A Multi-task Learning ApproachProceedings of the 2024 CHI Conference on Human Factors in Computing Systems10.1145/3613904.3642833(1-19)Online publication date: 11-May-2024
    • (2024)Emotion Recognition From Full-Body Motion Using Multiscale Spatio-Temporal NetworkIEEE Transactions on Affective Computing10.1109/TAFFC.2023.330519715:3(898-912)Online publication date: 1-Jul-2024
    • (2024)Fourier–Bessel Domain Adaptive Wavelet Transform-Based Method for Emotion Identification From EEG SignalsIEEE Sensors Letters10.1109/LSENS.2023.33476488:2(1-4)Online publication date: Feb-2024
    • (2024)Enhancing EEG-Based Emotion Recognition Using Asymmetric Windowing Recurrence PlotsIEEE Access10.1109/ACCESS.2024.340938412(85969-85982)Online publication date: 2024
    • (2024)Recognizing affective states from the expressive behavior of tennis players using Convolutional Neural NetworksKnowledge-Based Systems10.1016/j.knosys.2024.111856(111856)Online publication date: Apr-2024
    • (2024)Sensing technologies and machine learning methods for emotion recognition in autism: Systematic reviewInternational Journal of Medical Informatics10.1016/j.ijmedinf.2024.105469187(105469)Online publication date: Jul-2024
    • (2024)Learning facial expression and body gesture visual information for video emotion recognitionExpert Systems with Applications: An International Journal10.1016/j.eswa.2023.121419237:PAOnline publication date: 27-Feb-2024
    • (2024)Frontal EEG correlation based human emotion identification and classificationPhysical and Engineering Sciences in Medicine10.1007/s13246-024-01495-wOnline publication date: 14-Nov-2024
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media