[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2742647.2749243acmconferencesArticle/Chapter ViewAbstractPublication PagesmobisysConference Proceedingsconference-collections
abstract

Video: Lightweight Visible Light Communication for Indoor Positioning

Published: 18 May 2015 Publication History

Abstract

Visible light positioning (VLP) is an emerging positioning technique that utilizes indoor light sources to broadcast archer locations through visible light communication (VLC). Benefited by the densely deployed light lamps, VLP holds the promise for more accurate positioning accuracy than RF based approaches, and thus enables interesting applications such as retail navigation and shelf-level advertising in supermarkets and shopping malls.
However, we observe that in existing VLP systems, receiving devices are heavily burdened in handling light flickering for VLC. In order to prevent human from being disturbed, the VLC transmitter lamps have to transmit pulses in a high rate (over 1kHz). Since the pulse rate far exceeds the cameras' sampling capability (30fps), receiver design either requires customized light sensor with cumbersome calibration on receiving signal strength [2] or processing high resolution images to leverage rolling shutter effect of the CMOS camera to decode message [1].
The heavy burden on receiving devices motivated us to try getting rid of light flickers. Since human eyes normally can not perceive changes in polarization, the idea is to modulate polarization instead of intensity for communication. In this demo, we demonstrate the VLC system in our VLP design [3] which realizes this idea. It enables lightweight VLC that is even affordable in wearables (Google Glass), without incurring hardware modification or computation off-loading. Moreover, it also makes other types of illuminating light beyond LED light (even sun light) possible to construct communication, therefore eliminates the barrier for deploying future VLC-based applications.
As detailed in the full paper [3], our design was inspired by the liquid crystal display (LCD), from which we borrowed polarizer and liquid crystal. Liquid crystal has the property to change the polarization of bypassing polarized light according to the applied voltage. We use polarizer to polarize illuminating light and leverage liquid crystal to modulate bits through changing the light's polarization. The receiver can thus detect changes in polarization with a polarizing film, through which different polarizations result in different intensities. Since the SNR of such communication channel may significantly vary with the mobility of receiving device, we propose to add a dispersion filter to the transmitter. The dispersion filter can cast different frequency of lights into different polarization directions so that SNR in different receiving directions are evened. With the above techniques, VLC transmitter generates signal in low baud rate and mobile devices can perform VLC through camera directly. The communication is long in distance and lightweight enough for resource-constrained devices since the information is carried in intensity changes rather than certain image patterns in rolling shutter approaches.
In this demo, we will illustrate the prototype implementation of the VLC communication system. We use incandescent lamps as illuminating light sources. The transmitter consists of a polarizing film, a liquid crystal layer, a dispersor and a control board. The receiver is demonstrated in Android smartphone with polarizing film in front of the camera.

References

[1]
Y.-S. Kuo, P. Pannuto, K.-J. Hsiao, and P. Dutta. Luxapose: Indoor positioning with mobile phones and visible light. MobiCom ?14. ACM, 2014.
[2]
L. Li, P. Hu, C. Peng, G. Shen, and F. Zhao. Epsilon: A visible light based positioning system. NSDI ?14, 2014.
[3]
Z. Yang, Z. Wang, J. Zhang, C. Huang, and Q. Zhang. Wearables can afford: Light-weight indoor positioning with visible light. MobiSys?15. ACM, 2015.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
MobiSys '15: Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services
May 2015
516 pages
ISBN:9781450334945
DOI:10.1145/2742647
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Sponsors

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 18 May 2015

Check for updates

Author Tags

  1. pixel
  2. polarization
  3. visible light communication
  4. wearables

Qualifiers

  • Abstract

Conference

MobiSys'15
Sponsor:

Acceptance Rates

MobiSys '15 Paper Acceptance Rate 29 of 219 submissions, 13%;
Overall Acceptance Rate 274 of 1,679 submissions, 16%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 310
    Total Downloads
  • Downloads (Last 12 months)8
  • Downloads (Last 6 weeks)0
Reflects downloads up to 19 Dec 2024

Other Metrics

Citations

Cited By

View all

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

EPUB

View this article in ePub.

ePub

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media