[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2737095.2737113acmconferencesArticle/Chapter ViewAbstractPublication PagescpsweekConference Proceedingsconference-collections
research-article

Reducing multi-hop calibration errors in large-scale mobile sensor networks

Published: 13 April 2015 Publication History

Abstract

Frequent sensor calibration is essential in sensor networks with low-cost sensors. We exploit the fact that temporally and spatially close measurements of different sensors measuring the same phenomenon are similar. Hence, when calibrating a sensor, we adjust its calibration parameters to minimize the differences between co-located measurements of previously calibrated sensors. In turn, freshly calibrated sensors can now be used to calibrate other sensors in the network, referred to as multi-hop calibration.
We are the first to study multi-hop calibration with respect to a reference signal (micro-calibration) in detail. We show that ordinary least squares regression---commonly used to calibrate noisy sensors---suffers from significant error accumulation over multiple hops. In this paper, we propose a novel multi-hop calibration algorithm using geometric mean regression, which (i) highly reduces error propagation in the network, (ii) distinctly outperforms ordinary least squares in the multi-hop scenario, and (iii) requires considerably fewer ground truth measurements compared to existing network calibration algorithms. The proposed algorithm is especially valuable when calibrating large networks of heterogeneous sensors with different noise characteristics. We provide theoretical justifications for our claims. Then, we conduct a detailed analysis with artificial data to study calibration accuracy under various settings and to identify different error sources. Finally, we use our algorithm to accurately calibrate 13 million temperature, ground ozone (O3), and carbon monoxide (CO) measurements gathered by our mobile air pollution monitoring network.

References

[1]
K. Aberer, M. Hauswirth, and A. Salehi. A middleware for fast and flexible sensor network deployment. In VLDB, 2006.
[2]
Alphasense. CO-B4 4-Electrode carbon monoxide sensor (datasheet). http://goo.gl/ba2dnV, 2014.
[3]
Alphasense. NO2-B4 4-Electrode nitrogen dioxide sensor (datasheet). http://goo.gl/IpmhPb, 2014.
[4]
L. Balzano and R. Nowak. Blind calibration of sensor networks. In ACM/IEEE IPSN, pages 79--88, 2007.
[5]
J. Beutel, S. Gruber, A. Hasler, R. Lim, A. Meier, C. Plessl, I. Talzi, L. Thiele, C. Tschudin, M. Woehrle, and M. Yuecel. PermaDAQ: A scientific instrument for precision sensing and data recovery under extreme conditions. In ACM/IEE IPSN, pages 265--276, 2009.
[6]
J. A. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy, and M. B. Srivastava. Participatory sensing. In ACM WSW, 2006.
[7]
V. Bychkovskiy, S. Megerian, D. Estrin, and M. Potkonjak. A collaborative approach to in-place sensor calibration. In ACM/IEEE IPSN, pages 301--316, 2003.
[8]
R. J. Carroll, D. Ruppert, L. A. Stefanski, and C. M. Crainiceanu. Measurement error in nonlinear models: A modern perspective. Chapman & Hall/CRC, 2006.
[9]
M. Ceriotti, M. Corrà, L. D'Orazio, R. Doriguzzi, D. Facchin, S. Guna, G. P. Jesi, R. L. Cigno, L. Mottola, A. L. Murphy, et al. Is there light at the ends of the tunnel? Wireless sensor networks for adaptive lighting in road tunnels. In ACM/IEEE IPSN, pages 187--198, 2011.
[10]
M. Ceriotti, L. Mottola, G. P. Picco, A. L. Murphy, S. Guna, M. Corra, M. Pozzi, D. Zonta, and P. Zanon. Monitoring heritage buildings with wireless sensor networks: The Torre Aquila deployment. In ACM/IEEE IPSN, pages 277--288, 2009.
[11]
O. Chipara, C. Lu, T. C. Bailey, and G.-C. Roman. Reliable clinical monitoring using wireless sensor networks: Experiences in a step-down hospital unit. In ACM SenSys, pages 155--168, 2010.
[12]
S. De Vito, E. Massera, M. Piga, L. Martinotto, and G. Di Francia. On field calibration of an electronic nose for benzene estimation in an urban pollution monitoring scenario. Elsevier Sensors and Actuators B: Chemical, 129: 750--757, 2007.
[13]
W. E. Deming. Statistical adjustment of data. 1944.
[14]
M. Faulkner, M. Olson, R. Chandy, J. Krause, K. M. Chandy, and A. Krause. The next big one: Detecting earthquakes and other rare events from community-based sensors. In ACM/IEEE IPSN, pages 13--24, 2011.
[15]
E. D. Feigelson and G. J. Babu. Linear regression in astronomy. II. The Astrophysical Journal, 397: 55--67, 1992.
[16]
J. Feng, S. Megerian, and M. Potkonjak. Model-based calibration for sensor networks. In IEEE Sensors, pages 737--742, 2003.
[17]
M. Fierz, C. Houle, P. Steigmeier, and H. Burtscher. Design, calibration, and field performance of a miniature diffusion size classifier. Taylor & Francis AS&T, 45(1): 1--10, 2011.
[18]
C. Frost and S. G. Thompson. Correcting for regression dilution bias: comparison of methods for a single predictor variable. Journal of the Royal Statistical Society Series A, 163(2): 173--189, 2000.
[19]
J. G. Monroy, A. Lilienthal, J.-L. Blanco, J. González-Jiménez, and M. Trincavelli. Calibration of MOX gas sensors in open sampling systems based on Gaussian Processes. In IEEE Sensors, pages 1--4, 2012.
[20]
R. O. Gilbert. Statistical Methods for Environmental Pollution Monitoring. John Wiley and Sons, 1987.
[21]
J. Gillard. An historical overview of linear regression with errors in both variables. TR Cardiff University, 2006.
[22]
D. Hasenfratz, O. Saukh, and L. Thiele. On-the-fly calibration of low-cost gas sensors. In Springer EWSN, pages 228--244, 2012.
[23]
D. Hasenfratz, O. Saukh, and L. Thiele. Model-driven accuracy bounds for noisy sensor readings. In IEEE DCOSS, pages 165--174, 2013.
[24]
D. Hasenfratz, O. Saukh, C. Walser, C. Hueglin, M. Fierz, T. Arn, J. Beutel, and L. Thiele. Deriving high-resolution urban air pollution maps using mobile sensor nodes. Elsevier Journal of Pervasive and Mobile Computing, 2015.
[25]
D. Hasenfratz, O. Saukh, C. Walser, C. Hueglin, M. Fierz, and L. Thiele. Pushing the spatio-temporal resolution limit of urban air pollution maps. In IEEE PerCom, pages 69--77, 2014.
[26]
K. A. Kermack and J. B. S. Haldane. Organic correlation and allometry. JSTOR Biometrika, 37: 30--41, 1950.
[27]
W. H. Kruskal. On the uniqueness of the line of organic correlation. JSTOR Biometrics, 9: 47--58, 1953.
[28]
J. J. Li, B. Faltings, O. Saukh, D. Hasenfratz, and J. Beutel. Sensing the air we breathe--the OpenSense Zurich dataset. In AAAI, pages 323--325, 2012.
[29]
C.-J. M. Liang, J. Liu, L. Luo, A. Terzis, and F. Zhao. RACNet: A high-fidelity data center sensing network. In ACM SenSys, pages 15--28, 2009.
[30]
S. Lindenthal, V. Ussyshkin, J. Wang, and M. Pokorny. Airborne LIDAR: A fully-automated self-calibration procedure. In ISPRS, pages 73--78, 2011.
[31]
J. Lipor and L. Balzano. Robust blind calibration via total least squares. In IEEE ICASSP, pages 4244--4248, 2014.
[32]
I. Markovsky and S. V. Huffel. Overview of total least-squares methods. Elsevier Signal Processing, 87: 2283--2302, 2007.
[33]
C. Meurisch, K. Planz, D. Schäfer, and I. Schweizer. Noisemap: Discussing scalability in participatory sensing. In ACM SenseMine, 2013.
[34]
E. Miluzzo, N. D. Lane, A. T. Campbell, and R. Olfati-Saber. CaliBree: A self-calibration system for mobile sensor networks. In IEEE DCOSS, pages 314--331, 2008.
[35]
S. Moltchanov, I. Levy, Y. Etzion, U. Lerner, D. M. Broday, and B. Fishbain. On the feasibility of measuring urban air pollution by wireless distributed sensor networks. Science of The Total Environment, 502: 537--547, 2015.
[36]
S. Mukhopadhyay, D. Panigrahi, and S. Dey. Model-based techniques for data reliability in wireless sensor networks. In IEEE TMC, pages 528--543, 2009.
[37]
J. Peters, J. Theunis, M. V. Poppel, and P. Berghmans. Monitoring PM10 and ultrafine particles in urban environments using mobile measurements. Aerosol and Air Quality Research, 13: 509--522, 2013.
[38]
N. Ramanathan, L. Balzano, M. Burt, D. Estrin, T. Harmon, C. Harvey, J. Jay, E. Kohler, S. Rothenberg, and M. Srivastava. Rapid deployment with confidence: Calibration and fault detection in environmental sensor networks. TR 62 CENS, 2006.
[39]
W. E. Ricker. Linear regressions in fishery research. Fisheries Research Board of Canada, 30(3): 409--434, 1973.
[40]
P. A. Samuelson. A note on alternative regressions. Econometrica, 10(1): 80--83, 1942.
[41]
O. Saukh, D. Hasenfratz, C. Walser, and L. Thiele. On rendezvous in mobile sensing networks. In Springer RealWSN, pages 29--42, 2013.
[42]
Sensirion. SHT10 humidity and temperature sensor (datasheet). http://goo.gl/LHBas.
[43]
SGX Sensortech. MiCS-OZ-47 ozone sensor (datasheet). http://goo.gl/hT1AoM.
[44]
G. D. Smith and A. N. Phillips. Inflation in epidemiology: The proof and measurement of association between two things revisited. BMJ, 312(7047): 1659--1661, 6 1996.
[45]
R. J. Smith. Use and misuse of the reduced major axis for line-fitting. Wiley AJPA, 140(3): 476--86, 2009.
[46]
R. Tan, G. Xing, Z. Yuan, X. Liu, and J. Yao. System-level calibration for data fusion in wireless sensor networks. ACM TOSN, 9(3): 1--27, 2013.
[47]
G. Tolle et al. A macroscope in the redwoods. In ACM SenSys, pages 51--63, 2005.
[48]
K. Whitehouse and D. Culler. Calibration as parameter estimation in sensor networks. In ACM WSNA, pages 59--67, 2002.
[49]
E. B. Woolley. The method of minimized areas as a basis for correlation analysis. Econometrica, 9(1): 38--62, 1941.
[50]
Y. Xiang, L. Bai, R. Piedrahita, R. P. Dick, Q. Lv, M. Hannigan, and L. Shang. Collaborative calibration and sensor placement for mobile sensor networks. In ACM/IEEE IPSN, pages 73--84, 2012.

Cited By

View all
  • (2025)Mobile Calibration for Bus-Based Urban SensingIEEE Sensors Journal10.1109/JSEN.2024.351809325:3(5576-5583)Online publication date: 1-Feb-2025
  • (2024)Sens-BERT: A BERT-Based Approach for Enabling Transferability and Re-Calibration of Calibration Models for Low-Cost Sensors Under Reference Measurements ScarcityIEEE Sensors Journal10.1109/JSEN.2024.336296224:7(11362-11373)Online publication date: 1-Apr-2024
  • (2024)Estimating Black Carbon Levels With Proxy Variables and Low-Cost SensorsIEEE Internet of Things Journal10.1109/JIOT.2024.336197711:10(17577-17588)Online publication date: 15-May-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
IPSN '15: Proceedings of the 14th International Conference on Information Processing in Sensor Networks
April 2015
430 pages
ISBN:9781450334754
DOI:10.1145/2737095
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 April 2015

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Research-article

Funding Sources

  • NanoTera.ch

Conference

IPSN '15
Sponsor:

Acceptance Rates

Overall Acceptance Rate 143 of 593 submissions, 24%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)46
  • Downloads (Last 6 weeks)6
Reflects downloads up to 03 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Mobile Calibration for Bus-Based Urban SensingIEEE Sensors Journal10.1109/JSEN.2024.351809325:3(5576-5583)Online publication date: 1-Feb-2025
  • (2024)Sens-BERT: A BERT-Based Approach for Enabling Transferability and Re-Calibration of Calibration Models for Low-Cost Sensors Under Reference Measurements ScarcityIEEE Sensors Journal10.1109/JSEN.2024.336296224:7(11362-11373)Online publication date: 1-Apr-2024
  • (2024)Estimating Black Carbon Levels With Proxy Variables and Low-Cost SensorsIEEE Internet of Things Journal10.1109/JIOT.2024.336197711:10(17577-17588)Online publication date: 15-May-2024
  • (2024)GAMMAEngineering Applications of Artificial Intelligence10.1016/j.engappai.2023.107591128:COnline publication date: 14-Mar-2024
  • (2023)Data-Driven Machine Learning Calibration Propagation in A Hybrid Sensor Network for Air Quality MonitoringSensors10.3390/s2305281523:5(2815)Online publication date: 4-Mar-2023
  • (2023)PollutionMapper: Identifying Global Air Pollution SourcesACM Journal on Computing and Sustainable Societies10.1145/36171292:1(1-23)Online publication date: 29-Aug-2023
  • (2023)A UAV-Assisted Multi-Task Allocation Method for Mobile Crowd SensingIEEE Transactions on Mobile Computing10.1109/TMC.2022.314787122:7(3790-3804)Online publication date: 1-Jul-2023
  • (2023)Temporal Pattern-Based Denoising and Calibration for Low-Cost Sensors in IoT Monitoring PlatformsIEEE Transactions on Instrumentation and Measurement10.1109/TIM.2023.323962672(1-11)Online publication date: 2023
  • (2023)Drive-by Air Pollution Sensing Systems: Challenges and Future DirectionsIEEE Sensors Journal10.1109/JSEN.2023.330577923:19(23692-23703)Online publication date: 1-Oct-2023
  • (2023)EEATC: A Novel Calibration Approach for Low-Cost SensorsIEEE Sensors Journal10.1109/JSEN.2023.330436623:19(23500-23511)Online publication date: 1-Oct-2023
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media