[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2736277.2741675acmotherconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
research-article

Semantic Annotation of Mobility Data using Social Media

Published: 18 May 2015 Publication History

Abstract

Recent developments in sensors, GPS and smart phones have provided us with a large amount of mobility data. At the same time, large-scale crowd-generated social media data, such as geo-tagged tweets, provide rich semantic information about locations and events. Combining the mobility data and surrounding social media data enables us to semantically understand why a person travels to a location at a particular time (e.g., attending a local event or visiting a point of interest). Previous research on mobility data mining has been mainly focused on mining patterns using only the mobility data. In this paper, we study the problem of using social media to annotate mobility data. As social media data is often noisy, the key research problem lies in using the right model to retrieve only the relevant words with respect to a mobility record. We propose frequency-based method, Gaussian mixture model, and kernel density estimation (KDE) to tackle this problem. We show that KDE is the most suitable model as it captures the locality of word distribution very well. We test our proposal using the real dataset collected from Twitter and demonstrate the effectiveness of our techniques via both interesting case studies and a comprehensive evaluation.

References

[1]
L. O. Alvares, V. Bogorny, B. Kuijpers, J. A. F. de Macedo, B. Moelans, and A. Vaisman. A model for enriching trajectories with semantic geographical information. In Proc. ACM GIS, 2007.
[2]
N. Andrienko and G. Andrienko. Designing visual analytics methods for massive collections of movementdata. Cartographica: The International Journal for Geographic Information and Geovisualization, 2007.
[3]
D. Ashbrook and T. Starner. Using gps to learn significant locations and predict movement across multiple users. UbiComp, 2003.
[4]
L. Backstrom, J. Kleinberg, R. Kumar, and J. Novak. Spatial variation in search engine queries. In Proc. WWW, 2008.
[5]
J. Bithell. An application of density estimation to geographical epidemiology. Statistics in medicine, 9(6):691--701, 1990.
[6]
L. Breiman, W. Meisel, and E. Purcell. Variable kernel estimates of multivariate densities. Technometrics, 1977.
[7]
X. Cao, G. Cong, and C. S. Jensen. Mining significant semantic locations from gps data. Proc. VLDB, 2010.
[8]
D. Chakrabarti and K. Punera. Event summarization using tweets. ICWSM, 11:66--73, 2011.
[9]
Z. Cheng, J. Caverlee, and K. Lee. You are where you tweet: a content-based approach to geo-locating twitter users. In Proc. ACM CIKM, 2010.
[10]
E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: user movement in location-based social networks. In Proc. ACM KDD, 2011.
[11]
K. Dehnad. Density estimation for statistics and data analysis. Technometrics, 29(4):495--495, 1987.
[12]
N. Donthu and R. T. Rust. Note-estimating geographic customer densities using kernel density estimation. Marketing Science, 8(2):191--203, 1989.
[13]
N. Eagle, A. Pentland, and D. Lazer. Inferring friendship network structure by using mobile phone data. In Proc. PNAS, 2009.
[14]
G. Erkan and D. R. Radev. Lexrank: graph-based lexical centrality as salience in text summarization. Journal of Artificial Intelligence Research, 2004.
[15]
B. Guc, M. May, Y. Saygin, and C. Körner. Semantic annotation of gps trajectories. In Proc AGILE, 2008.
[16]
S. Hasan, X. Zhan, and S. V. Ukkusuri. Understanding urban human activity and mobility patterns using large-scale location-based data from online social media. In UrbComp, 2013.
[17]
D. Inouye and J. K. Kalita. Comparing twitter summarization algorithms for multiple post summaries. In PASSAT and SocialCom. IEEE, 2011.
[18]
Z. Li, B. Ding, J. Han, R. Kays, and P. Nye. Mining periodic behaviors for moving objects. In Proc. ACM KDD, 2010.
[19]
L. Liao. Location-based activity recognition. PhD thesis, University of Washington, 2006.
[20]
M. Lichman and P. Smyth. Modeling human location data with mixtures of kernel densities. In Proc. SIGKDD. ACM, 2014.
[21]
N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou, Y. Tao, and D. Cheung. Mining, indexing, and querying historical spatiotemporal data. In Proc. ACM KDD, 2004.
[22]
M. Mathioudakis, N. Bansal, and N. Koudas. Identifying, attributing and describing spatial bursts. In Proc. VLDB, 2010.
[23]
R. Mihalcea and P. Tarau. Textrank: Bringing order into texts. ACL, 2004.
[24]
A. T. Palma, V. Bogorny, B. Kuijpers, and L. O. Alvares. A clustering-based approach for discovering interesting places in trajectories. In Proc. SAC, 2008.
[25]
D. Radev, T. Allison, S. Blair-Goldensohn, J. Blitzer, A. Celebi, S. Dimitrov, E. Drabek, A. Hakim, W. Lam, D. Liu, et al. Mead-a platform for multidocument multilingual text summarization. 2004.
[26]
B. Sharifi, M.-A. Hutton, and J. Kalita. Summarizing microblogs automatically. In Proc NAACL, 2010.
[27]
S. Spaccapietra, C. Parent, M. L. Damiani, J. A. de Macedo, F. Porto, and C. Vangenot. A conceptual view on trajectories. Trans. IEEE TKDE, 2008.
[28]
A. Strehl, J. Ghosh, and R. Mooney. Impact of similarity measures on web-page clustering. In AAAI Workshop for Web Search, 2000.
[29]
H. Takamura, H. Yokono, and M. Okumura. Summarizing a document stream. In Advances in Information Retrieval, pages 177--188. Springer, 2011.
[30]
L. Vanderwende, H. Suzuki, C. Brockett, and A. Nenkova. Beyond sumbasic: Task-focused summarization with sentence simplification and lexical expansion. Information Processing & Management,2007.
[31]
K. Xie, K. Deng, and X. Zhou. From trajectories to activities: a spatio-temporal join approach. In Proc. LBSN, 2009.
[32]
Z. Yan, D. Chakraborty, C. Parent, S. Spaccapietra, and K. Aberer. Semitri: a framework for semantic annotation of heterogeneous trajectories. In Proc. EDBT, 2011.
[33]
Z. Yan, D. Chakraborty, C. Parent, S. Spaccapietra, and K. Aberer. Semantic trajectories: Mobility data computation and annotation. ACM Trans. TIST, 4(3):49, 2013.
[34]
Z. Yan, N. Giatrakos, V. Katsikaros, N. Pelekis, and Y. Theodoridis. Setrastream: semantic-aware trajectory construction over streaming movement data. In SSTD. Springer, 2011.
[35]
Z. Yin, L. Cao, J. Han, C. Zhai, and T. Huang. Geographical topic discovery and comparison. In Proc. WWW, 2011.
[36]
J.-D. Zhang and C.-Y. Chow. igslr: personalized geo-social location recommendation: a kernel density estimation approach. In Proc. SIGSPATIAL. ACM, 2013.
[37]
Y. Zheng, Y. Chen, Q. Li, X. Xie, and W.-Y. Ma. Understanding transportation modes based on gps data for web applications. Trans. ACM TWEB, 2010.
[38]
Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. Mining interesting locations and travel sequences from gps trajectories. In Proc. WWW, 2009.
[39]
C. Zhou, D. Frankowski, P. Ludford, S. Shekhar, and L. Terveen. Discovering personally meaningful places: An interactive clustering approach. TOIS, 2007.

Cited By

View all
  • (2025)Deep learning for cross-domain data fusion in urban computing: Taxonomy, advances, and outlookInformation Fusion10.1016/j.inffus.2024.102606113(102606)Online publication date: Jan-2025
  • (2024)Contextual Enrichment of Crowds from Mobile Phone Data through Multimodal Geo-Social Media AnalysisISPRS International Journal of Geo-Information10.3390/ijgi1310035013:10(350)Online publication date: 3-Oct-2024
  • (2024)Particle filtering supported probability density estimation of mobility patternsHeliyon10.1016/j.heliyon.2024.e29437(e29437)Online publication date: Apr-2024
  • Show More Cited By

Index Terms

  1. Semantic Annotation of Mobility Data using Social Media

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    WWW '15: Proceedings of the 24th International Conference on World Wide Web
    May 2015
    1460 pages
    ISBN:9781450334693

    Sponsors

    • IW3C2: International World Wide Web Conference Committee

    In-Cooperation

    Publisher

    International World Wide Web Conferences Steering Committee

    Republic and Canton of Geneva, Switzerland

    Publication History

    Published: 18 May 2015

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. annotation
    2. heterogeneous data
    3. keneral density estimation
    4. microblogs
    5. mobility data
    6. semantics

    Qualifiers

    • Research-article

    Conference

    WWW '15
    Sponsor:
    • IW3C2

    Acceptance Rates

    WWW '15 Paper Acceptance Rate 131 of 929 submissions, 14%;
    Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)12
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 04 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)Deep learning for cross-domain data fusion in urban computing: Taxonomy, advances, and outlookInformation Fusion10.1016/j.inffus.2024.102606113(102606)Online publication date: Jan-2025
    • (2024)Contextual Enrichment of Crowds from Mobile Phone Data through Multimodal Geo-Social Media AnalysisISPRS International Journal of Geo-Information10.3390/ijgi1310035013:10(350)Online publication date: 3-Oct-2024
    • (2024)Particle filtering supported probability density estimation of mobility patternsHeliyon10.1016/j.heliyon.2024.e29437(e29437)Online publication date: Apr-2024
    • (2023)Social Media Driven Big Data Analysis for Disaster Situation Awareness: A TutorialIEEE Transactions on Big Data10.1109/TBDATA.2022.31584319:1(1-21)Online publication date: 1-Feb-2023
    • (2023)Spatiotemporal Activity Modeling via Hierarchical Cross-Modal Embedding : Extended Abstract2023 IEEE 39th International Conference on Data Engineering (ICDE)10.1109/ICDE55515.2023.00334(3815-3816)Online publication date: Apr-2023
    • (2022)Language Modeling on Location-Based Social NetworksISPRS International Journal of Geo-Information10.3390/ijgi1102014711:2(147)Online publication date: 18-Feb-2022
    • (2022)Privacy-Preserving Decision Trees Training and PredictionACM Transactions on Privacy and Security10.1145/351719725:3(1-30)Online publication date: 19-May-2022
    • (2022)Learning Relationship-Based Access Control Policies from Black-Box SystemsACM Transactions on Privacy and Security10.1145/351712125:3(1-36)Online publication date: 19-May-2022
    • (2022)Computation on Encrypted Data Using Dataflow AuthenticationACM Transactions on Privacy and Security10.1145/351300525:3(1-36)Online publication date: 19-May-2022
    • (2022)Spatial Data Quality in the Internet of Things: Management, Exploitation, and ProspectsACM Computing Surveys10.1145/349833855:3(1-41)Online publication date: 3-Feb-2022
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media