[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Regenerative Simulation for Queueing Networks with Exponential or Heavier Tail Arrival Distributions

Published: 08 May 2015 Publication History

Abstract

Multiclass open queueing networks find wide applications in communication, computer, and fabrication networks. Steady-state performance measures associated with these networks is often a topic of interset. Conceptually, under mild conditions, a sequence of regeneration times exists in multiclass networks, making them amenable to regenerative simulation for estimating steady-state performance measures. However, typically, identification of such a sequence in these networks is difficult. A well-known exception is when all interarrival times are exponentially distributed, where the instants corresponding to customer arrivals to an empty network constitute a sequence of regeneration times. In this article, we consider networks in which the interarrival times are generally distributed but have exponential or heavier tails. We show that these distributions can be decomposed into a mixture of sums of independent random variables such that at least one of the components is exponentially distributed. This allows an easily implementable embedded sequence of regeneration times in the underlying Markov process. We show that among all such interarrival time decompositions, the one with an exponential component that has the largest mean minimizes the asymptotic variance of the standard deviation estimator. We also show that under mild conditions on the network primitives, the regenerative mean and standard deviation estimators are consistent and satisfy a joint central limit theorem useful for constructing asymptotically valid confidence intervals.

Supplementary Material

a22-moka-apndx.pdf (moka.zip)
Supplemental movie, appendix, image and software files for, Regenerative Simulation for Queueing Networks with Exponential or Heavier Tail Arrival Distributions

References

[1]
S. Andradóttir, J. M. Calvin, and P. W. Glynn. 1995. Accelerated regeneration for markov chain simulations. Probab. Eng. Inf. Sci. 9, 4, 497--523.
[2]
S. Asmussen. 2003. Applied Probability and Queues (2nd ed.). Applications of Mathematics: Stochastic Modelling and Applied Probability, Vol. 51. Springer-Verlag, New York.
[3]
S. Asmussen and S. G. Foss. 1993. Renovation, regeneration, and coupling in multiple-server queues in continuous time. Front. Pure Appl. Probab. 1, 1--6.
[4]
K. B. Athreya and P. Ney. 1978. A New Approach to the Limit Theory of Recurrent Markov Chains. Trans. Amer. Math. Soc. 245, 493--501.
[5]
D. Bertsimas, I. C. Paschalidis, and J. N. Tsitsiklis. 1994. Optimization of multiclass queueing networks: Polyhedral and nonlinear characterizations of achievable performance. Ann. Appl. Probab. 4, 1, 43--75.
[6]
A. A. Borovkov. 1984. Asymptotic Methods in Queuing Theory. John Wiley & Sons, Ltd., Chichester.
[7]
M. Bramson. 1998. State space collapse with application to heavy traffic limits for multiclass queueing networks. Queueing Syst. 30, 1--2, 89--140.
[8]
J. M. Calvin. 1994. Return-state independent quantities in regenerative simulation. Oper. Res. 42, 3, 531--542.
[9]
J. M. Calvin, P. W. Glynn, and M. K. Nakayama. 2006. The semi-regenerativmethod of dimulation output analysis. ACM Trans. Model. Comput. Simul. 16, 3, 280--315.
[10]
H. Chen. 1995. Fluid approximations and stability of multiclass queueing networks: work-conserving disciplines. Ann. Appl. Probab. 5, 3, 637--665.
[11]
H. Chen and D. D. Yao. 1993. Dynamic scheduling of a multiclass fluid network. Oper. Res. 41, 6, 1104--1115.
[12]
M. A. Crane and D. L. Iglehart. 1975. Simulating stable stochastic systems: III. Regenerative processes and discrete-event simulations. Oper. Res. 23, 1, 33--45.
[13]
J. G. Dai. 1995. On positive Harris recurrence of multiclass queueing networks: a unified approach via fluid limit models. Ann. Appl. Probab. 5, 1, 49--77.
[14]
J. G. Dai and S. P. Meyn. 1995. Stability and convergence of moments for multiclass queueing networks via fluid limit models. Automatic Control, IEEE Transactions on 40, 11, 1889--1904.
[15]
S. G. Foss and V. V. Kalashnikov. 1991. Regeneration and renovation in queues. Queueing Syst. 8, 3, 211--223.
[16]
P. W. Glynn. 1989. A GSMP formalism for discrete event systems. Proc. IEEE 77, 1, 14--23.
[17]
P. W. Glynn. 1994. Some topics in regenerative steady-state simulation. Acta Applicandae Mathematicae 34, 1, 225--236.
[18]
P. W. Glynn. 2006. Chapter 16 Simulation Algorithms for Regenerative Processes. In Simulation, S. G. Henderson and B. L. Nelson (Eds.). Handbooks in Operations Research and Management Science, Vol. 13. Elsevier, 477--500.
[19]
P. W. Glynn and P. Heidelberger. 1991. Analysis of parallel replicated simulations under a completion time constraint. ACM Trans. Model. Comput. Simul. 1, 1, 3--23.
[20]
P. W. Glynn and D. L. Iglehart. 1981. Simulation Output Analysis for General State Space Markov Chains. Ph.D. dissertation, Stanford University, Department of Operational Research, Stanford, CA.
[21]
P. W. Glynn and D. L. Iglehart. 1984. Confidence intervals using the regenerative method for simulation output analysis. Technical Report in Defense Technical Information Center (DTIC), ADA150147, 248--249.
[22]
P. W. Glynn and D. L. Iglehart. 1986. Recursive moment formulas for regenerative simulation. In J. Jassen (Ed.). Semi-Markov Models, 99--110.
[23]
P. W. Glynn and D. L. Iglehart. 1987. A joint central limit theorem for the sample mean and regenerative variance estimator. Ann. Oper. Res. 8, 41--55.
[24]
P. W. Glynn and D. L. Iglehart. 1995. A Martingale approach to regenerative simulation. Probab. Eng. Inf. Sci. 9, 01, 123--131.
[25]
K. M. Gregory and U. N. Bhat. 1997. Estimation for renewal processes with unobservable gamma or Erlang interarrival times. J. Stat. Plann. Inference 61, 2, 355--372.
[26]
M. Greiner, M. Jobmann, and L. Lipsky. 1999. The importance of power-tail distributions for modeling queueing systems. Oper. Res. 47, 2, 313--326.
[27]
J. M. Harrison. 1988. Brownian models of queueing networks with heterogeneous customer populations. In Stochastic Differential Systems, Stochastic Control Theory and Applications (Minneapolis, Minn., 1986). IMA Vol. Math. Appl., Vol. 10. Springer, New York, 147--186.
[28]
P. Heidelberger and D. L. Iglehart. 1979. Comparing stochastic systems using regenerative simulation with common random numbers. Advances in Applied Probability 804--819.
[29]
S. G. Henderson and P. W. Glynn. 1999. Can the regenerative method be applied to discrete-event simulation? In Winter Simulation Conference Proceedings, 1999, Vol. 1. 367--373.
[30]
S. G. Henderson and P. W. Glynn. 2001. Regenerative steady-state simulation of discrete-event systems. ACM Trans. Model. Comput. Simul. 11, 4, 313--345.
[31]
D. L. Iglehart. 1975. Simulating stable stochastic systems, V: Comparison of ratio estimators. Nav. Res. Logist. Q. 22, 3, 553--565.
[32]
D. L. Iglehart and P. A. W. Lewis. 1979. Regenerative simulation with internal controls. J. ACM (JACM) 26, 2, 271--282.
[33]
D. L. Iglehart and G. S. Shedler. 1978a. Regenerative simulation of response times in networks of queues. J. ACM (JACM) 25, 3, 449--460.
[34]
D. L. Iglehart and G. S. Shedler. 1978b. Simulation of response times in finite-capacity open networks of queues. Oper. Res. 26, 5, 896--914.
[35]
D. L. Iglehart and G. S. Shedler. 1979. Regenerative simulation of response times in networks of queues with multiple job types. Acta Informatica 12, 2, 159--175. Issue 2.
[36]
D. L. Iglehart and G. S. Shedler. 1980. Regenerative simulation of response times in networks of queues. Lecture Notes in Control and Information Sciences, Vol. 26. Springer-Verlag, Berlin.
[37]
D. L. Iglehart and G. S. Shedler. 1981. Regenerative simulation of response times in networks of queues: statistical efficiency. Acta Informatica 15, 4, 347--363.
[38]
D. L. Iglehart and G. S. Shedler. 1983. Statistical efficiency of regenerative simulation methods for networks of queues. Adv. in Appl. Probab. 15, 1, 183--197.
[39]
D. L. Iglehart and M. L. Stone. 1983. Regenerative simulation for estimating extreme values. Operations Research 31, 6, 1145--1166.
[40]
P. R. Kumar and T. I. Seidman. 1990. Dynamic instabilities and stabilization methods in distributed real-time scheduling of manufacturing systems. IEEE Trans. Automat. Control 35, 3, 289--298.
[41]
J. Li. 1997. An approximation method for the analysis of GI/G/1 queues. Oper. Res. 45, 1, 140--144.
[42]
S. H. Lu and P. R. Kumar. 1991. Distributed scheduling based on due dates and buffer priorities. Automatic Control, IEEE Transactions on 36, 12, 1406--1416.
[43]
K. S. Meier-Hellstern, P. E. Wirth, Y. Yan, and D. A. Hoeflin. 1991. Traffic models for ISDN data users: office automation application. In Proc. ITC, Vol. 13, 167--172.
[44]
S. Meyn. 1997. Stability and optimization of queueing networks and their fluid models. Lect. Appl. Math. Am. Math. Soc. 33, 175--200.
[45]
S. P. Meyn and R. L. Tweedie. 2009. Markov Chains and Stochastic Stability (2nd ed.). Cambridge University Press, New York.
[46]
S. B. Moka and S. Juneja. 2013. Regenerative simulation for multiclass open queueing networks. In Winter Simulation Conference (WSC’13). IEEE, 643--654.
[47]
S. B. Moka and S. Juneja. 2014. Regenerative simulation for queueing networks with exponential or heavier tail arrival distributions: supplementary material available in the ACM Digital Library. ACM Trans. Model. Comput. Simul.
[48]
E. Morozov. 2004. Weak regeneration in modeling of queueing processes. Queueing Syst. 46, 3--4, 295--315.
[49]
E. Nummelin. 1978. A splitting technique for Harris recurrent Markov chains. Z. Wahrsch. Verw. Gebiete 43, 4, 309--318.
[50]
E. Nummelin. 1981. Regeneration in tandem queues. Adv. Appl. Probab. 13, 1, 221--230.
[51]
J. R. Perkins and P. R. Kumar. 1989. Stable, distributed, real-time scheduling of flexible manufacturing/assembly/disassembly systems. IEEE Trans. Automatic Control, IEEE Transactions on 34, 2, 139--148.
[52]
K. Sigman. 1988. Regeneration in tandem queues with multiserver stations. J. Appl. Probab. 25, 2, 391--403.
[53]
W. L. Smith. 1955. Regenerative stochastic processes. Proc. Roy. Soc. London. Ser. A. 232, 6--31.
[54]
H. Thorisson. 1983. The coupling of regenerative processes. Adv. Appl. Probab. 15, 3, 531--561.
[55]
H. Thorisson. 2000. Coupling, Stationarity, and Regeneration. Springer-Verlag, New York.
[56]
L. M. Wein. 1988. Scheduling semiconductor wafer fabrication. IEEE Trans. Semicond. Manuf. 1, 3, 115--130.
[57]
R. J. Williams. 1998. Diffusion approximations for open multiclass queueing networks: sufficient conditions involving state space collapse. Queueing Systems 30, 1--2, 27--88.

Cited By

View all
  • (2019)Unbiased estimation of the reciprocal mean for non-negative random variablesProceedings of the Winter Simulation Conference10.5555/3400397.3400430(404-415)Online publication date: 8-Dec-2019
  • (2019)Unbiased Estimation of The Reciprocal Mean For Non-Negative Random Variables2019 Winter Simulation Conference (WSC)10.1109/WSC40007.2019.9004815(404-415)Online publication date: Dec-2019
  • (2015)Resampled Regenerative EstimatorsACM Transactions on Modeling and Computer Simulation10.1145/269971825:4(1-25)Online publication date: 8-May-2015

Index Terms

  1. Regenerative Simulation for Queueing Networks with Exponential or Heavier Tail Arrival Distributions

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Modeling and Computer Simulation
      ACM Transactions on Modeling and Computer Simulation  Volume 25, Issue 4
      Special Issue on Don Iglehart
      November 2015
      139 pages
      ISSN:1049-3301
      EISSN:1558-1195
      DOI:10.1145/2774955
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 08 May 2015
      Accepted: 01 November 2014
      Revised: 01 April 2014
      Received: 01 July 2013
      Published in TOMACS Volume 25, Issue 4

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. Regenerative process
      2. multiclass queueing network
      3. optimal sequence of regeneration times
      4. regenerative simulation

      Qualifiers

      • Research-article
      • Research
      • Refereed

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)3
      • Downloads (Last 6 weeks)1
      Reflects downloads up to 26 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2019)Unbiased estimation of the reciprocal mean for non-negative random variablesProceedings of the Winter Simulation Conference10.5555/3400397.3400430(404-415)Online publication date: 8-Dec-2019
      • (2019)Unbiased Estimation of The Reciprocal Mean For Non-Negative Random Variables2019 Winter Simulation Conference (WSC)10.1109/WSC40007.2019.9004815(404-415)Online publication date: Dec-2019
      • (2015)Resampled Regenerative EstimatorsACM Transactions on Modeling and Computer Simulation10.1145/269971825:4(1-25)Online publication date: 8-May-2015

      View Options

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media