[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2674005.2675003acmconferencesArticle/Chapter ViewAbstractPublication PagesconextConference Proceedingsconference-collections
research-article

Trace-Driven Analysis of ICN Caching Algorithms on Video-on-Demand Workloads

Published: 02 December 2014 Publication History

Abstract

Even though a key driver for Information-Centric Networking (ICN) has been the rise in Internet video traffic, there has been surprisingly little work on analyzing the interplay between ICN and video ? which ICN caching strategies work well on video work- loads and how ICN helps improve video-centric quality of experience (QoE). In this work, we bridge this disconnect with a trace- driven study using 196M video requests from over 16M users on a country-wide topology with 80K routers. We evaluate a broad space of content replacement (e.g., LRU, LFU, FIFO) and content placement (e.g., leave a copy everywhere, probabilistic) strategies over a range of cache sizes. We highlight four key findings: (1) the best placement and re- placement strategies depend on the cache size and vary across improvement metrics; that said, LFU+probabilistic caching [37] is a close-to-optimal strategy overall; (2) video workloads show considerable caching-related benefits (e.g., -- 10% traffic reduction) only with very large cache sizes (≥ 100GB); (3) the improvement in video QoE is low (≥ 12%) if the content provider already has a substantial geographical presence; and (4) caches in the middle and the edge of the network, requests from highly populated regions and without content servers, and requests for popular content contribute most to the overall ICN-induced improvements in video QoE.

References

[1]
CCNx Project. http://www.ccnx.org/.
[2]
Chunzhen. http://www.cz88.net/.
[3]
Cisco forecast. http://blogs.cisco.com/sp/comments/cisco\_visual\_networking\_index\_forecast\_annual\_update/.
[4]
COntent Mediator architecture for content-aware nETworks (COMET). http://www.comet-project.org/.
[5]
Direct Code Execution (DCE). http://www.nsnam.org/docs/dce/release/1.0/manual/singlehtml/index.html.
[6]
NetInf. http://www.netinf.org/.
[7]
PPCloud: Big Data in PPTV. http://www.dvbcn.com/2014/03/18--109253.html.
[8]
PPTV. http://www.pptv.com/.
[9]
M. Abrams, C. R. Standridge, G. Abdulla, E. A. Fox, and S. Williams. Removal policies in network caches for world-wide web documents. In Proc. SIGCOMM, 1996.
[10]
A. Afanasyev, I. Moiseenko, and L. Zhang. ndnSIM: NDN simulator for NS-3. http://nameddata.\net/techreport/TR005-ndnsim.pdf, 2012.
[11]
S. Ando and A. Nakao. In-network cache simulations based on a youtube traffic analysis at the edge network. In Proc. CFI, 2014.
[12]
P. A. Aranda, M. Zitterbart, Z. Boudjemil, M. Ghader, G. H. Garcia, M. Johnsson, A. Karouia, G. Lazar, M. Majanen, P. Mannersalo, D. Martin, M. T. Nguyen, S. P. Sanchez, P. Phelan, M. P. de Leon, G. M. Sollner, Y. Zaki, and L. Zhao. 4WARD. http://www.4ward-project.eu/, 2010.
[13]
B. Cheng, X. Liu, Z. Zhang, and H. Jin. A measurement study of a peer-to-peer video-on-demand system. In Proc. IPTPS, 2007.
[14]
A. Balachandran, V. Sekar, A. Akella, and S. Seshan. Analyzing the potential benefits of cdn augmentation strategies for internet video workloads. In Proc. IMC, 2013.
[15]
C. M. Cabral, C. E. Rothenberg, and M. F. Magalhães. Mini-CCNx: Fast prototyping for named data networking. In Proc. ICN, 2013.
[16]
M. Calder, X. Fan, Z. Hu, E. Katz-Bassett, J. Heidemann, and R. Govindan. Mapping the Expansion of Google's Serving Infrastructure. In Proc. IMC, 2013.
[17]
M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon. I tube, you tube, everybody tubes: Analyzing the world's largest user generated content video system. In Proc. IMC, 2007.
[18]
W. K. Chai, D. He, I. Psaras, and G. Pavlou. Cache "less for more" in information-centric networks. In Proc. IFIP Networking, 2012.
[19]
H. Che, Y. Tung, and Z. Wang. Hierarchical web caching systems: modeling, design and experimental results. IEEE JSAC, 2002.
[20]
R. Chiocchetti, D. Rossi, and G. Rossini. ccnsim: An highly scalable ccn simulator. In Proc. ICC, June 2013.
[21]
F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan, and H. Zhang. Understanding the impact of video quality on user engagement. In Proc. SIGCOMM, 2011.
[22]
S. Eum, K. Nakauchi, M. Murata, Y. Shoji, and N. Nishinaga. Catt: Potential based routing with content caching for icn. In Proc. ICN, 2012.
[23]
S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen, B. Maggs, K. Ng, V. Sekar, and S. Shenker. Less pain, most of the gain: Incrementally deployable ICN. In Proc. SIGCOMM, 2013.
[24]
C. Fricker, P. Robert, J. Roberts, and N. Sbihi. Impact of traffic mix on caching performance in a content-centric network. In Proc. INFOCOM WKSHPS, 2012.
[25]
M. Gritter and D. R. Cheriton. An architecture for content routing support in the Internet. In USITS, 2001.
[26]
B. Han, X. Wang, N. Choi, T. Kwon, and Y. Choi. Amvs-ndn: Adaptive mobile video streaming and sharing in wireless named data networking. In Proc. NOMEN, 2013.
[27]
D. Han, A. Anand, F. Dogar, B. Li, H. Lim, M. Machado, A. Mukundan, W. Wu, A. Akella, D. G. Andersen, J. W. Byers, S. Seshan, and P. Steenkiste. Xia: Efficient support for evolvable internetworking. In Proc. NSDI, 2012.
[28]
T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A buffer-based approach to rate adaptation: Evidence from a large video streaming service. In Proc. SIGCOMM, 2014.
[29]
Y. Huang, T. Z. Fu, D.-M. Chiu, J. C. Lui, and C. Huang. Challenges, design and analysis of a large-scale p2p-vod system. In Proc. SIGCOMM, 2008.
[30]
V. Jacobson et al. Networking named content. In CoNext, 2009.
[31]
V. Jacobson, J. D. Thornton, D. K. Smetters, B. Zhang, G. Tsudik, K. claffy, D. Krioukov, D. Massey, C. Papadopoulos, T. Abdelzaher, L. Wang, P. Crowley, and E. Yeh. Named Data Networking (NDN) project. http://nameddata.net/techreport/TR001ndn-proj.pdf, 2010.
[32]
J. Jiang, V. Sekar, and H. Zhang. Improving fairness, efficiency, and stability in http-based adaptive video streaming with FESTIVE. In Proc. CoNEXT, 2012.
[33]
T. Koponen et al. A data-oriented (and beyond) network architecture. In SIGCOMM, 2007.
[34]
S. S. Krishnan and R. K. Sitaraman. Video stream quality impacts viewer behavior: Inferring causality usingquasi-experimental designs. In Proc. IMC, 2012.
[35]
D. Kulinski, J. Burke, and L. Zhang. Video Streaming over Named Data Networking. IEEE COMSOC MMTC E-Letter, 2013.
[36]
N. Laoutaris, H. Che, and I. Stavrakakis. The LCD interconnection of LRU caches and its analysis. Perform. Eval., 2006.
[37]
N. Laoutaris, S. Syntila, and I. Stavrakakis. Meta algorithms for hierarchical web caches. In Proc. ICPCC, 2004.
[38]
Z. Li, M. Sbai, Y. Hadjadj-Aoul, A. Gravey, D. Alliez, J. Garnier, G. Madec, G. Simon, and K. Singh. Network friendly video distribution. In Proc. NOF, 2012.
[39]
Z. Li and G. Simon. Time-shifted tv in content centric networks: The case for cooperative in-network caching. In Proc. ICC, 2011.
[40]
H. H. Liu, Y. Wang, Y. R. Yang, H. Wang, and C. Tian. Optimizing cost and performance for content multihoming. In Proc. SIGCOMM, 2012.
[41]
X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar, I. Stoica, and H. Zhang. A case for a coordinated internet video control plane. In Proc. SIGCOMM, 2012.
[42]
Z. Ming, M. Xu, and D. Wang. Age-based cooperative caching in information-centric networks. In Proc. INFOCOM WORKSHOPS, 2012.
[43]
I. Psaras, W. K. Chai, and G. Pavlou. Probabilistic in-network caching for information-centric networks. In Proc. ICN, 2012.
[44]
I. Psaras, R. G. Clegg, R. Landa, W. K. Chai, and G. Pavlou. Modelling and evaluation of ccn-caching trees. In Proc. NETWORKING, 2011.
[45]
G. Rossini and D. Rossi. A dive into the caching performance\ of content centric networking. In Proc. CAMAD, 2012.
[46]
A. Sharma, A. Venkataramani, and R. K. Sitaraman. Distributing content simplifies isp traffic engineering. In Proc. SIGMETRICS, 2013.
[47]
G. Tyson, S. Kaune, S. Miles, Y. El-khatib, A. Mauthe, and A. Taweel. A trace-driven analysis of caching in content-centric networks. In Proc. ICCCN, 2012.
[48]
W. Wang, S. Yi, Y. Guo, M. A. Kaafar, and Z. Li. Crcache: Exploiting the correlation between content popularity and network topology for icn caching. In Proc. ICC, 2014.
[49]
Y. Wang, Z. Li, G. Tyson, S. Uhlig, and G. Xie. Optimal cache allocation for content-centric networking. In Proc. ICNP, 2013.
[50]
H. Yin, X. Liu, F. Qiu, N. Xia, C. Lin, H. Zhang, V. Sekar, and G. Min. Inside the bird's nest: Measurements of large-scale live vod from the 2008 olympics. In Proc. IMC, 2008.
[51]
H. Yu, D. Zheng, B. Y. Zhao, and W. Zheng. Understanding user behavior in large-scale video-on-demand systems. In Proc. EuroSys, 2006.

Cited By

View all
  • (2025)QM-ARC: QoS-aware Multi-tier Adaptive Cache Replacement StrategyFuture Generation Computer Systems10.1016/j.future.2024.107548163(107548)Online publication date: Feb-2025
  • (2023)A survey of cache placement algorithms in content delivery networksE3S Web of Conferences10.1051/e3sconf/202345809004458(09004)Online publication date: 7-Dec-2023
  • (2022)A Proxy Re-Encryption Approach to Secure Data Sharing in the Internet of Things Based on BlockchainIEEE Systems Journal10.1109/JSYST.2021.307675916:1(1685-1696)Online publication date: Mar-2022
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
CoNEXT '14: Proceedings of the 10th ACM International on Conference on emerging Networking Experiments and Technologies
December 2014
438 pages
ISBN:9781450332798
DOI:10.1145/2674005
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 02 December 2014

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. caching
  2. information-centric networking
  3. internet video

Qualifiers

  • Research-article

Conference

CoNEXT '14
Sponsor:

Acceptance Rates

CoNEXT '14 Paper Acceptance Rate 27 of 133 submissions, 20%;
Overall Acceptance Rate 198 of 789 submissions, 25%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)14
  • Downloads (Last 6 weeks)0
Reflects downloads up to 19 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2025)QM-ARC: QoS-aware Multi-tier Adaptive Cache Replacement StrategyFuture Generation Computer Systems10.1016/j.future.2024.107548163(107548)Online publication date: Feb-2025
  • (2023)A survey of cache placement algorithms in content delivery networksE3S Web of Conferences10.1051/e3sconf/202345809004458(09004)Online publication date: 7-Dec-2023
  • (2022)A Proxy Re-Encryption Approach to Secure Data Sharing in the Internet of Things Based on BlockchainIEEE Systems Journal10.1109/JSYST.2021.307675916:1(1685-1696)Online publication date: Mar-2022
  • (2022)Lattice Puncturable Attribute Based Proxy Re-encryption Scheme and Its Application in Information Centric NetworkAdvances in Information and Communication10.1007/978-3-030-98015-3_52(765-786)Online publication date: 12-Mar-2022
  • (2021)A Neighborhood Aware Caching and Interest Dissemination Scheme for Content Centric NetworksIEEE Transactions on Network and Service Management10.1109/TNSM.2021.307932618:3(3900-3917)Online publication date: Sep-2021
  • (2020)Load Balancing for Stateful Forwarding by Mitigating Heavy Hitters: A Case for Multi-Threaded NDN Software RoutersIEEE Access10.1109/ACCESS.2020.30185558(155071-155085)Online publication date: 2020
  • (2019)Lightweight Cache Admission Algorithm for Fast NDN Software RoutersJournal of Information Processing10.2197/ipsjjip.27.12527(125-134)Online publication date: 2019
  • (2019)Features-Enhanced Multi-Attribute Estimation with Convolutional Tensor Correlation Fusion NetworkACM Transactions on Multimedia Computing, Communications, and Applications10.1145/335554215:3s(1-23)Online publication date: 15-Oct-2019
  • (2019)Synthesizing Facial Photometries and Corresponding Geometries Using Generative Adversarial NetworksACM Transactions on Multimedia Computing, Communications, and Applications10.1145/333706715:3s(1-24)Online publication date: 15-Oct-2019
  • (2019)Visual Attention Analysis and Prediction on Human Faces for Children with Autism Spectrum DisorderACM Transactions on Multimedia Computing, Communications, and Applications10.1145/333706615:3s(1-23)Online publication date: 15-Oct-2019
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media