[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2666310.2666410acmconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
research-article

Towards GeoSpatial semantic data management: strengths, weaknesses, and challenges ahead

Published: 04 November 2014 Publication History

Abstract

An immense wealth of data is already accessible through the Semantic Web and an increasing part of it also has geospatial context or relevance. Although existing technology is mature enough to integrate a variety of information from heterogeneous sources into interlinked features, it still falls behind when it comes to representation and reasoning on spatial characteristics. It is only lately that several RDF stores have begun to accommodate geospatial entities and to enable some kind of processing on them. To address interoperability, the OGC has recently adopted the GeoSPARQL standard, which defines a vocabulary for representing geometric types in RDF and an extension to the SPARQL language for formulating queries. In this paper, we provide a comprehensive review of the current state-of-the-art in geospatially-enabled semantic data management. Apart from an insightful analysis of the available architectures in industry and academia, we conduct an evaluation study on prominent RDF stores with geospatial support. We also compare their performance and attested capabilities to renowned DBMSs widely used in geospatial applications. We introduce a methodology suitable to assess RDF stores for robustness against large geospatial datasets, and also for expressiveness on a variety of queries involving both spatial and thematic criteria. As our findings demonstrate, the potential for query optimization, advanced indexing schemes, and spatio-semantic extensions is significant. Towards this goal, we point out several challenging issues for joint research by the GIS and Semantic Web communities.

References

[1]
S. Auer, J. Lehmann, and S. Hellmann. LinkedGeoData -- Adding a Spatial Dimension to the Web of Data. In ISWC, pp. 731--746, 2009.
[2]
Basic Geo (WGS84 lat/long) Vocabulary. URL: http://www.w3.org/2003/01/geo/
[3]
R. Battle and D. Kolas. Enabling the Geospatial Semantic Web with Parliament and GeoSPARQL. Semantic Web Journal, 3(4):355--370, 2012.
[4]
Bigdata Triple Store. URL: http://www.systap.com
[5]
C. Bizer, T. Heath, and T. Berners-Lee. Linked Data - The Story So Far. IJSWIS, 5(3): 1--22, 2009.
[6]
C. Bizer and A. Schultz. The Berlin SPARQL Benchmark. IJSWIS, 5(2):1--24, 2009.
[7]
A. Brodt, D. Nicklas, and B. Mitschang. Deep Integration of Spatial Query Processing into Native RDF Triple Stores. In ACM GIS, pp. 33--42, 2010.
[8]
European Commission. INSPIRE Directive: Infrastructure for Spatial Information in the European Community. URL: http://inspire.jrc.ec.europa.eu/
[9]
Franz Inc. AllegroGraph Triple Store. URL: http://www.franz.com/agraph/allegrograph/
[10]
G. Garbis, K. Kyzirakos, and M. Koubarakis. Geographica: A Benchmark for Geospatial RDF Stores. In ISWC, 2013.
[11]
GeoJSON 1.0. URL: http://geojson.org/
[12]
GeoKnow EU/FP7 project. Deliverable 2.1.1: Market and Research Overview. URL: http://bit.ly/1pElP7L
[13]
Geo OWL Ontology. URL: http://bit.ly/1q9Th3Q
[14]
GeoRDF Profile. URL: http://www.w3.org/wiki/GeoRDF
[15]
GeoRSS. URL: http://georss.org/
[16]
A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In SIGMOD, pp. 47--57, 1984.
[17]
J. Hellerstein, J. Naughton, A. Pfeffer. Generalized Search Trees for Database Systems. In VLDB, pp. 562--573, 1995.
[18]
H. Hu and X. Du. Linking Open Spatiotemporal Data in the Data Clouds. In RSKT, pp. 304--309, 2010.
[19]
IBM DB2 Spatial Extender. URL: http://ibm.co/1ohWGfv
[20]
IBM DB2 NoSQL Support. URL: http://ibm.co/1mdHnWF
[21]
D. Kolas. A Benchmark for Spatial Semantic Web Systems. In SSWS, 2008.
[22]
D. Kolas, I. Emmons, and M. Dean. Efficient Linked-List RDF Indexing in Parliament. In SSWS, pp. 17--32, 2009.
[23]
W. Kuhn, T. Kauppinen, and K. Janowicz. Linked Data -- A Paradigm Shift for Geographic Information Science. In GIScience, pp. 173--186, 2014.
[24]
K. Kyzirakos, M. Karpathiotakis, M. Koubarakis. Strabon: A Semantic Geospatial DBMS. In ISWC, pp. 295--311, 2012.
[25]
J. Liagouris, N. Mamoulis, P. Bouros, and M. Terrovitis. An Effective Encoding Scheme for Spatial RDF Data. PVLDB, 7(12): 1271--1282, 2014.
[26]
Microsoft SQL Server. URL: http://bit.ly/1lJYj62
[27]
M. Morsey, J. Lehmann, S. Auer, and A. C. N. Ngomo. DBpedia SPARQL Benchmark: Performance Assessment with Real Queries on Real Data. In ISWC, pp 454--469, 2011.
[28]
MySQL Database. URL: http://www.mysql.com/
[29]
NeoGeo Geometry Ontology. URL: http://geovocab.org/
[30]
Ontotext AD. GraphDB (formerly OWLIM) Triple Store. URL: http://www.ontotext.com/ontotext-graphdb-owlim/
[31]
OGC Geography Markup Language Encoding Standard, Version 3.2.1, 2007. URL: http://bit.ly/1x52Cw4
[32]
OGC Geography Markup Language (GML) Simple Features Profile, Version 2.0, 2012. URL: http://bit.ly/1pPKD8I
[33]
OGC Implementation Specification for Geographic Information - Simple Feature Access - Part 2: SQL Option, Version 1.2.1, 2010. URL: http://bit.ly/1mN6NJR
[34]
OGC Implementation Standard for Geographic Information - Simple Feature Access - Part 1: Common Architecture, Version 1.2.1, 2011. URL: http://bit.ly/1qK0gje
[35]
OGC GeoSPARQL Standard - A Geographic Query Language for RDF Data, 2012. URL: http://bit.ly/1vnWA76
[36]
OpenLink Software. Virtuoso Universal Server. URL: http://virtuoso.openlinksw.com/
[37]
OpenSahara uSeekM library. URL: http://bit.ly/1ATPPyC
[38]
OpenStreetMap. URL: http://www.openstreetmap.org/
[39]
Oracle Spatial and Graph. URL: http://bit.ly/1qQo07k
[40]
OWL Web Ontology Language Overview. URL: http://www.w3.org/TR/owl-features/
[41]
K. Patroumpas, M. Alexakis, G. Giannopoulos, and S. Athanasiou. TripleGeo: an ETL Tool for Transforming Geospatial Data into RDF Triples. In LWDM, pp. 275--278, 2014.
[42]
M. Perry. A Framework to Support Spatial, Temporal and Thematic Analytics over Semantic Web Data. PhD thesis, Wright State University, 2008.
[43]
PostGIS for PostgreSQL. URL: http://postgis.net/
[44]
PostgreSQL Database. URL: http://www.postgresql.org/
[45]
S. Ray, B. Simion, and A. Demke Brown. Jackpine: a Benchmark to Evaluate Spatial Database Performance. In ICDE, pp. 1139--1150, 2011.
[46]
Raytheon BBN Technologies Inc. Parliament Triple Store. URL: http://parliament.semwebcentral.org/
[47]
Resource Description Framework Primer. URL: http://www.w3.org/TR/rdf-primer/
[48]
RDF Schema. URL: http://www.w3.org/TR/rdf-schema/
[49]
Sesame RDF Framework. URL: http://www.openrdf.org/
[50]
SPARQL 1.1 Query Language for RDF. URL: http://www.w3.org/TR/sparql11-query/
[51]
Stardog RDF database. URL: http://www.stardog.com/
[52]
C.-J. Wang, W.-S. Ku, and H. Chen. Geo-Store: A Spatially-Augmented SPARQL Query Evaluation System. In ACM SIGPATIAL GIS, pp. 562--565, 2012.
[53]
D. Wang, L. Zou, Y. Feng, X. Shen, J. Tian, and D. Zhao. S-store: An Engine for Large RDF Graph Integrating Spatial Information. In DASFAA, pp. 31--47, 2013.
[54]
X. Zhai, L. Huang, and Z. Xiao. Geo-spatial Query based on Extended SPARQL. In Geoinformatics, pp. 1--4, 2010.

Cited By

View all
  • (2024)Python for Geospatial Data AnalysisEthics, Machine Learning, and Python in Geospatial Analysis10.4018/979-8-3693-6381-2.ch005(94-119)Online publication date: 10-May-2024
  • (2022)Semantic Integration of Raster Data for Earth Observation on Territorial UnitsISPRS International Journal of Geo-Information10.3390/ijgi1102014911:2(149)Online publication date: 19-Feb-2022
  • (2022)A Semantically Data-Driven Classification Framework for Energy Consumption in BuildingsEnergies10.3390/en1509315515:9(3155)Online publication date: 26-Apr-2022
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGSPATIAL '14: Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
November 2014
651 pages
ISBN:9781450331319
DOI:10.1145/2666310
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 04 November 2014

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. GeoSPARQL
  2. RDF
  3. evaluation
  4. geospatial linked data
  5. triple store

Qualifiers

  • Research-article

Funding Sources

  • European Commission

Conference

SIGSPATIAL '14
Sponsor:
  • University of North Texas
  • Microsoft
  • ORACLE
  • Facebook
  • SIGSPATIAL

Acceptance Rates

SIGSPATIAL '14 Paper Acceptance Rate 39 of 184 submissions, 21%;
Overall Acceptance Rate 257 of 1,238 submissions, 21%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)28
  • Downloads (Last 6 weeks)4
Reflects downloads up to 15 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Python for Geospatial Data AnalysisEthics, Machine Learning, and Python in Geospatial Analysis10.4018/979-8-3693-6381-2.ch005(94-119)Online publication date: 10-May-2024
  • (2022)Semantic Integration of Raster Data for Earth Observation on Territorial UnitsISPRS International Journal of Geo-Information10.3390/ijgi1102014911:2(149)Online publication date: 19-Feb-2022
  • (2022)A Semantically Data-Driven Classification Framework for Energy Consumption in BuildingsEnergies10.3390/en1509315515:9(3155)Online publication date: 26-Apr-2022
  • (2022)GeoSPARQL query support for scientific raster array dataComputers & Geosciences10.1016/j.cageo.2021.105023159:COnline publication date: 1-Feb-2022
  • (2021)A comprehensive overview of RDF for spatial and spatiotemporal data managementThe Knowledge Engineering Review10.1017/S026988892100008436Online publication date: 22-Jun-2021
  • (2021)Evaluating Geospatial RDF Stores Using the Benchmark Geographica 2Journal on Data Semantics10.1007/s13740-021-00118-x10:3-4(189-228)Online publication date: 23-Apr-2021
  • (2021)DORIC: discovering topological relations based on spatial link compositionKnowledge and Information Systems10.1007/s10115-021-01603-263:10(2645-2669)Online publication date: 16-Aug-2021
  • (2020)Semantic Integration of Raster Data for Earth Observation: An RDF Dataset of Territorial Unit Versions with their Land CoverISPRS International Journal of Geo-Information10.3390/ijgi90905039:9(503)Online publication date: 21-Aug-2020
  • (2020)An Approach for Integrating Earth Observation, Change Detection and Contextual Data for Semantic SearchIGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium10.1109/IGARSS39084.2020.9324064(3115-3118)Online publication date: 26-Sep-2020
  • (2019)SRX: efficient management of spatial RDF dataThe VLDB Journal10.1007/s00778-019-00554-zOnline publication date: 18-Jul-2019
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media