[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2608628.2608667acmotherconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Factoring linear differential operators in n variables

Published: 23 July 2014 Publication History

Abstract

In this paper, we present a new algorithm and an experimental implementation for factoring elements in the polynomial nth Weyl algebra, the polynomial nth shift algebra, and Zn-graded polynomials in the nth <u>q</u>-Weyl algebra.
The most unexpected result is that this noncommutative problem of factoring partial differential operators can be approached effectively by reducing it to the problem of solving systems of polynomial equations over a commutative ring. In the case where a given polynomial is Zn-graded, we can reduce the problem completely to factoring an element in a commutative multivariate polynomial ring.
The implementation in Singular is effective on a broad range of polynomials and increases the ability of computer algebra systems to address this important problem. We compare the performance and output of our algorithm with other implementations in major computer algebra systems on nontrivial examples.

References

[1]
S. Abramov. Problems of computer algebra involved in the search for polynomial solutions of linear differential and difference equations. Mosc. Univ. Comput. Math. Cybern., 1989(3):63--68, 1989.
[2]
S. Abramov and M. Petkovšek. On polynomial solutions of linear partial differential and (q-)difference equations. In Proc. CASC 2012, pages 1--11. Berlin: Springer, 2012.
[3]
S. A. Abramov, M. Bronstein, and M. Petkovšek. On polynomial solutions of linear operator equations. In Proc. ISSAC 1995, pages 290--296. ACM Press, 1995.
[4]
D. Andres. Noncommutative Computer Algebra with Applications in in Algebraic Analysis. PhD thesis, RWTH Aachen University, 2013.
[5]
O. Bachmann and H.-G. Gräbe. The symbolicdata project. In Reports on Computer Algebra, volume 27. 2000.
[6]
R. Beals and E. A. Kartashova. Constructively factoring linear partial differential operators in two variables. Theor. Math. Phys., 145(2):1511--1524, 2005.
[7]
B. Buchberger. Introduction to Groebner bases. Berlin: Springer, 1997.
[8]
J. Bueso, J. Gómez-Torrecillas, and A. Verschoren. Algorithmic methods in non-commutative algebra. Applications to quantum groups. Dordrecht: Kluwer Academic Publishers, 2003.
[9]
W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 3-1-6 --- A computer algebra system for polynomial computations. 2012. http://www.singular.uni-kl.de.
[10]
M. Foupouagnigni, W. Koepf, and A. Ronveaux. Factorization of fourth-order differential equations for perturbed classical orthogonal polynomials. J. Comp. Appl. Math., 162(2):299--326, 2004.
[11]
I. M. Gel'fand and A. A. Kirillov. Sur les corps Liés aux algèbres enveloppantes des algèbres de Lie. Publications Mathématiques de l'IHÉS, 31:5--19, 1966.
[12]
D. Grigor'ev. Complexity of factoring and calculating the GCD of linear ordinary differential operators. J. Symb. Comput., 10(1):7--37, 1990.
[13]
D. Grigoriev and F. Schwarz. Factoring and solving linear partial differential equations. Computing, 73(2):179--197, 2004.
[14]
A. Heinle and V. Levandovskyy. Factorization of polynomials in Z-graded skew polynomial rings. ACM Commun. Comput. Algebra, 44(3/4):113--114, 2011.
[15]
A. Heinle and V. Levandovskyy. Factorization of Z-homogeneous polynomials in the first (q)--Weyl algebra. arXiv preprint arXiv:1302.5674, 2013.
[16]
A. Heinle, V. Levandovskyy, and A. Nareike. Symbolicdata: SDeval --- benchmarking for everyone. arXiv preprint arXiv:1310.5551, 2013.
[17]
M. Kashiwara. Vanishing cycle sheaves and holonomic systems of differential equations. In Algebraic Geometry, pages 134--142. Springer, 1983.
[18]
W. Koepf. Hypergeometric summation. An algorithmic approach to summation and special function identities. Wiesbaden: Vieweg, 1998.
[19]
E. Landau. Ein Satz über die Zerlegung homogener linearer Differentialausdrücke in irreductible Factoren. Journal für die reine und angewandte Mathematik, 124:115--120, 1902.
[20]
A. Loewy. Über reduzible lineare homogene Differentialgleichungen. Math. Ann., 56:549--584, 1903.
[21]
A. Loewy. Über vollständig reduzible lineare homogene Differentialgleichungen. Math. Ann., 62:89--117, 1906.
[22]
B. Malgrange. Polynômes de Bernstein-Sato et cohomologie evanescente. Astérisque, 101-102:243--267, 1983.
[23]
H. Melenk and J. Apel. REDUCE package NCPOLY: Computation in non-commutative polynomial ideals. Konrad-Zuse-Zentrum Berlin (ZIB), 1994.
[24]
M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter, J. McCarron, and P. DeMarco. Maple Introductory Programming Guide. Maplesoft, 2008.
[25]
M. Saito, B. Sturmfels, and N. Takayama. Gröbner deformations of hypergeometric differential equations. Berlin: Springer, 2000.
[26]
F. Schwarz. A factorization algorithm for linear ordinary differential equations. In Proceedings of the ACM-SIGSAM 1989 international symposium on Symbolic and algebraic computation, pages 17--25. ACM, 1989.
[27]
F. Schwarz. Alltypes in the web. ACM Commun. Comput. Algebra, 42(3):185--187, Feb. 2009.
[28]
E. Shemyakova. Parametric factorizations of second-, third- and fourth-order linear partial differential operators with a completely factorable symbol on the plane. Mathematics in Computer Science, 1(2):225--237, 2007.
[29]
E. Shemyakova. Multiple factorizations of bivariate linear partial differential operators. In Proc. CASC 2009, pages 299--309. Springer, 2009.
[30]
E. Shemyakova. Refinement of two-factor factorizations of a linear partial differential operator of arbitrary order and dimension. Mathematics in Computer Science, 4:223--230, 2010. 10.1007/s11786-010-0052-3.
[31]
S. Tsarev. Problems that appear during factorization of ordinary linear differential operators. Program. Comput. Softw., 20(1):27--29, 1994.
[32]
S. Tsarev. An algorithm for complete enumeration of all factorizations of a linear ordinary differential operator. In Proc. ISSAC 1996. New York, NY: ACM Press, 1996.
[33]
M. van Hoeij. Factorization of linear differential operators. PhD thesis, University of Nijmegen, 1996.
[34]
M. van Hoeij. Factorization of differential operators with rational functions coefficients. J. Symb. Comput., 24(5):537--561, 1997.
[35]
M. van Hoeij. Formal solutions and factorization of differential operators with power series coefficients. J. Symb. Comput., 24(1):1--30, 1997.
[36]
M. van Hoeij and Q. Yuan. Finding all Bessel type solutions for linear differential equations with rational function coefficients. In Proc. ISSAC 2010, pages 37--44. ACM Press, 2010.

Cited By

View all
  • (2016)A Factorization Algorithm for G-Algebras and ApplicationsProceedings of the 2016 ACM International Symposium on Symbolic and Algebraic Computation10.1145/2930889.2930906(263-270)Online publication date: 20-Jul-2016
  • (2015)The SDEval benchmarking toolkitACM Communications in Computer Algebra10.1145/2768577.276857849:1(1-9)Online publication date: 10-Jun-2015

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
ISSAC '14: Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation
July 2014
444 pages
ISBN:9781450325011
DOI:10.1145/2608628
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 23 July 2014

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. factorization
  2. linear partial differential operators
  3. non-commutative algebra
  4. singular
  5. weyl algebras

Qualifiers

  • Research-article

Funding Sources

Conference

ISSAC '14

Acceptance Rates

ISSAC '14 Paper Acceptance Rate 51 of 96 submissions, 53%;
Overall Acceptance Rate 395 of 838 submissions, 47%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)8
  • Downloads (Last 6 weeks)0
Reflects downloads up to 14 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2016)A Factorization Algorithm for G-Algebras and ApplicationsProceedings of the 2016 ACM International Symposium on Symbolic and Algebraic Computation10.1145/2930889.2930906(263-270)Online publication date: 20-Jul-2016
  • (2015)The SDEval benchmarking toolkitACM Communications in Computer Algebra10.1145/2768577.276857849:1(1-9)Online publication date: 10-Jun-2015

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media