[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2506583.2506642acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
tutorial

Fine-Scale Recombination Mapping of High-Throughput Sequence Data

Published: 22 September 2013 Publication History

Abstract

In this paper, we contrast the resolution and accuracy of determining recombination boundaries using genotyping arrays compared to high-throughput sequencing. In addition, we consider the impacts of sequence coverage and genetic diversity on localizing recombination boundaries. We developed a hidden Markov model for estimating recombination breakpoints based on variant observations seen in the read coverage spanning uniformly sized genomic windows. Our model includes 36 states representing all combinations of 8 genomes, and estimates a founder mosaic that is consistent with the variants observed in the aligned sequences. At HMM transition locations we consider the most likely founder-pair and refine the recombination breakpoints down to an interval spanning two informative variants. We compare this solution to alternate solutions based on microarrays that we have estimated. At 30x coverage the recombination mapping accuracy far exceeds the resolution attainable by any microarray. Even at coverages of 1x and below we are generally able to estimate recombination breakpoints with comparable accuracy.

References

[1]
D. L. Aylor, W. Valdar, W. Foulds-Mathes, and et. al. Genetic analysis of complex traits in the emerging Collaborative Cross. Genome research, 21(8):1213--22, Aug. 2011.
[2]
T. M. Beissinger, C. N. Hirsch, R. S. Sekhon, J. M. Foerster, J. M. Johnson, G. Muttoni, B. Vaillancourt, C. R. Buell, S. M. Kaeppler, and N. de Leon. Marker Density and Read-Depth for Genotyping Populations Using Genotyping-by-Sequencing. Genetics, 193(April):1073--1081, Feb. 2013.
[3]
H. Brunschwig, L. Levi, E. Ben-David, R. W. Williams, B. Yakir, and S. Shifman. Fine-Scale Maps of Recombination Rates and Hotspots in the Mouse Genome. Genetics, 191(3):757--764, July 2012.
[4]
D. M. Church, L. Goodstadt, L. W. Hillier, and et. al. Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS biology, 7(5):e1000112, May 2009.
[5]
C. C. Consortium. The Genome Architecture of the Collaborative Cross Mouse Genetic Reference Population. Genetics, 190(2):389--401, Feb. 2012.
[6]
C.-P. Fu, C. E. Welsh, F. P.-M. de Villena, and L. McMillan. Inferring ancestry in admixed populations using microarray probe intensities. In Proceedings of the ACM Conference on Bioinformatics, Computational Biology and Biomedicine, BCB '12, pages 105--112, New York, NY, USA, 2012. ACM.
[7]
T. M. Keane, L. Goodstadt, P. Danecek, and et. al. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature, 477(7364):289--94, Sept. 2011.
[8]
B. Langmead and S. L. Salzberg. Fast gapped-read alignment with Bowtie 2. Nature methods, 9(4):357--9, Apr. 2012.
[9]
B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome biology, 10(3):R25, Jan. 2009.
[10]
E. Y. Liu, Q. Zhang, L. McMillan, F. P.-M. de Villena, and W. Wang. Efficient genome ancestry inference in complex pedigrees with inbreeding. Bioinformatics, 26(12):i199--i207, June 2010.
[11]
K. Paigen, J. P. Szatkiewicz, K. Sawyer, N. Leahy, E. D. Parvanov, S. H. S. Ng, J. H. Graber, K. W. Broman, and P. M. Petkov. The Recombinational Anatomy of a Mouse Chromosome. PLoS Genet, 4(7):e1000119, July 2008.
[12]
E. Parvanov, P. Petkov, and K. Paigen. Prdm9 controls activation of mammalian recombination hotspots. Science, 327(5967):10--13, 2010.
[13]
J. E. Pool, I. Hellmann, J. D. Jensen, and R. Nielsen. Population genetic inference from genomic sequence variation. Genome research, 20(3):291--300, Mar. 2010.
[14]
A. Roberts, F. Pardo-Manuel de Villena, W. Wang, L. McMillan, and D. W. Threadgill. The polymorphism architecture of mouse genetic resources elucidated using genome-wide resequencing data: implications for QTL discovery and systems genetics. Mammalian genome: official journal of the International Mammalian Genome Society, 18(6-7):473--81, July 2007.
[15]
T. B. Sackton, R. J. Kulathinal, C. M. Bergman, A. R. Quinlan, E. B. Dopman, M. Carneiro, G. T. Marth, D. L. Hartl, and A. G. Clark. Population genomic inferences from sparse high-throughput sequencing of two populations of Drosophila melanogaster. Genome biology and evolution, 1:449--65, Jan. 2009.
[16]
K. L. Svenson, D. M. Gatti, W. Valdar, C. E. Welsh, R. Cheng, E. J. Chesler, A. A. Palmer, L. McMillan, and G. A. Churchill. High-Resolution Genetic Mapping Using the Mouse Diversity Outbred Population. Genetics, 190(2):437--447, Feb. 2012.
[17]
C. E. Welsh and L. McMillan. Accelerating the inbreeding of multi-parental recombinant inbred lines generated by sibling matings. G3: Genes| Genomes| Genetics, 2(2):191--198, 2012.
[18]
C. E. Welsh, D. R. Miller, K. F. Manly, J. Wang, L. McMillan, G. Morahan, R. Mott, F. A. Iraqi, D. W. Threadgill, and F. P. M. de Villena. Status and access to the Collaborative Cross population. Mammalian Genome, pages 1--7, 2012.
[19]
B. Yalcin, J. Nicod, A. Bhomra, S. Davidson, J. Cleak, L. Farinelli, M. Østerås, A. Whitley, W. Yuan, X. Gan, M. Goodson, P. Klenerman, A. Satpathy, D. Mathis, C. Benoist, D. J. Adams, R. Mott, and J. Flint. Commercially available outbred mice for genome-wide association studies. PLoS genetics, 6(9), Sept. 2010.
[20]
H. Yang, Y. Ding, L. N. Hutchins, J. Szatkiewicz, T. a. Bell, B. J. Paigen, J. H. Graber, F. P.-M. de Villena, and G. a. Churchill. A customized and versatile high-density genotyping array for the mouse. Nature methods, 6(9):663--6, Sept. 2009.
[21]
H. Yang, J. R. Wang, J. P. Didion, R. J. Buus, T. a. Bell, C. E. Welsh, F. Bonhomme, A. H.-T. Yu, M. W. Nachman, J. Pialek, P. Tucker, P. Boursot, L. McMillan, G. a. Churchill, and F. P.-M. de Villena. Subspecific origin and haplotype diversity in the laboratory mouse. Nature genetics, 43(7):648--55, July 2011.

Cited By

View all
  • (2014)Quantitative trait loci mapping with microarray marker intensitiesProceedings of the 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics10.1145/2649387.2649432(472-478)Online publication date: 20-Sep-2014
  • (2014)InstantGenotypeProceedings of the 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics10.1145/2649387.2649422(147-154)Online publication date: 20-Sep-2014

Index Terms

  1. Fine-Scale Recombination Mapping of High-Throughput Sequence Data

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    BCB'13: Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics
    September 2013
    987 pages
    ISBN:9781450324342
    DOI:10.1145/2506583
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 22 September 2013

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. haplotype reconstruction
    2. hidden Markov model
    3. high-throughput sequencing

    Qualifiers

    • Tutorial
    • Research
    • Refereed limited

    Conference

    BCB'13
    Sponsor:
    BCB'13: ACM-BCB2013
    September 22 - 25, 2013
    Wshington DC, USA

    Acceptance Rates

    BCB'13 Paper Acceptance Rate 43 of 148 submissions, 29%;
    Overall Acceptance Rate 254 of 885 submissions, 29%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 31 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2014)Quantitative trait loci mapping with microarray marker intensitiesProceedings of the 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics10.1145/2649387.2649432(472-478)Online publication date: 20-Sep-2014
    • (2014)InstantGenotypeProceedings of the 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics10.1145/2649387.2649422(147-154)Online publication date: 20-Sep-2014

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media