[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2465506.2465932acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Factoring bivariate lacunary polynomials without heights

Published: 26 June 2013 Publication History

Abstract

We present an algorithm which computes the multilinear factors of bivariate lacunary polynomials. It is based on a new Gap theorem which allows to test whether P(X)=∑kj=1 αjXαj(1+X)βjis identically zero in polynomial time. The algorithm we obtain is more elementary than the one by Kaltofen and Koiran (ISSAC'05) since it relies on the valuation of polynomials of the previous form instead of the height of the coefficients. As a result, it can be used to find some linear factors of bivariate lacunary polynomials over a field of large finite characteristic in probabilistic polynomial time.

References

[1]
J. Bi, Q. Cheng, and J. M. Rojas. Sub-Linear Root Detection, and New Hardness Results, for Sparse Polynomials Over Finite Fields. In Proc. ISSAC, 2013. arXiv:1204.1113.
[2]
A. Bostan and P. Dumas. Wronskians and linear independence. Am. Math. Mon., 117(8):722--727, 2010.
[3]
A. Chattopadhyay, B. Grenet, P. Koiran, N. Portier, and Y. Strozecki. Factoring bivariate lacunary polynomials without heights. Xiv:1206.4224, 2012.
[4]
F. Cucker, P. Koiran, and S. Smale. A polynomial time algorithm for Diophantine equations in one variable. J. Symb. Comput., 27(1):21--30, 1999.
[5]
M. Filaseta, A. Granville, and A. Schinzel. Irreducibility and Greatest Common Divisor Algorithms for Sparse Polynomials. In Number Theory and Polynomials, volume 352 of P. Lond. Math. Soc., pages 155--176. Camb. U. Press, 2008.
[6]
S. Gao. Factoring multivariate polynomials via partial differential equations. Math. Comput., 72(242):801--822, 2003.
[7]
M. Giesbrecht and D. S. Roche. On lacunary polynomial perfect powers. In Proc. ISSAC'08, pages 103--110. ACM, 2008.
[8]
M. Giesbrecht and D. S. Roche. Detecting lacunary perfect powers and computing their roots. J. Symb. Comput., 46(11):1242--1259, 2011.
[9]
G. Hajós. {solution to problem 41} (in hungarian). Mat. Lapok, 4:40--41, 1953.
[10]
E. Kaltofen. Polynomial-Time Reductions from Multivariate to Bi- and Univariate Integral Polynomial Factorization. SIAM J. Comput., 14(2):469--489, 1985.
[11]
E. Kaltofen and P. Koiran. On the complexity of factoring bivariate supersparse (lacunary) polynomials. In Proc. ISSAC'05, pages 208--215. ACM, 2005.
[12]
E. Kaltofen and P. Koiran. Finding small degree factors of multivariate supersparse (lacunary) polynomials over algebraic number fields. In Proc. ISSAC'06, pages 162--168. ACM, 2006.
[13]
E. L. Kaltofen and G. Lecerf. Factorization of Multivariate Polynomials. In Handbook of Finite Fields, Disc. Math. Appl. CRC Press, 2013. To appear.
[14]
E. L. Kaltofen and M. Nehring. Supersparse black box rational function interpolation. In Proc. ISSAC'11, pages 177--186. ACM, 2011.
[15]
I. Kaplansky. An introduction to differential algebra. Actualités scientifiques et industrielles. Hermann, 1976.
[16]
M. Karpinski and I. Shparlinski. On the computational hardness of testing square-freeness of sparse polynomials. In Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, volume 1719 of LNCS, pages 731--731. Springer, 1999.
[17]
N. Kayal and C. Saha. On the Sum of Square Roots of Polynomials and Related Problems. In Proc. CCC'11, pages 292--299. IEEE, 2011.
[18]
A. Kipnis and A. Shamir. Cryptanalysis of the HFE public key cryptosystem by relinearization. In Proc. CRYPTO, pages 19--30. Springer, 1999.
[19]
P. Koiran, N. Portier, and S. Tavenas. A Wronskian approach to the real τ-conjecture.hrefhttp://arxiv.org/abs/1205.1015arXiv:1205.1015, 2012. Accepted for oral presentation at MEGA 2013.
[20]
G. Lecerf. Improved dense multivariate polynomial factorization algorithms. J. Symb. Comput., 42(4):477--494, 2007.
[21]
A. K. Lenstra. Factoring Multivariate Polynomials over Algebraic Number Fields. SIAM J. Comput., 16(3):591--598, 1987.
[22]
H. Lenstra Jr. Finding small degree factors of lacunary polynomials. In Number theory in progress, pages 267--276. De Gruyter, 1999.
[23]
É. Lucas. Théorie des fonctions numériques simplement périodiques. Amer. J. Math., 1(2--4):184--240,289--321, 1878.
[24]
H. Montgomery and A. Schinzel. Some arithmetic properties of polynomials in several variables. In Transcendence Theory: Advances and Applications, chapter 13, pages 195--203. Academic Press, 1977.
[25]
M. Petkov\v sek, H. S. Wilf, and D. Zeilberger. A=B. AK Peters, 1996.
[26]
D. Plaisted. Sparse complex polynomials and polynomial reducibility. J. Comput. Syst. Sci., 14(2):210--221, 1977.
[27]
J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Camb. U. Press, 2nd edition, 2003.
[28]
J. von zur Gathen, M. Karpinski, and I. Shparlinski. Counting curves and their projections. Comput. Complex., 6(1):64--99, 1996.

Cited By

View all

Index Terms

  1. Factoring bivariate lacunary polynomials without heights

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    ISSAC '13: Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation
    June 2013
    400 pages
    ISBN:9781450320597
    DOI:10.1145/2465506
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 26 June 2013

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. bivariate polynomials
    2. finite fields
    3. lacunary polynomials
    4. polynomial factorization
    5. polynomial-time complexity
    6. wronskian determinant

    Qualifiers

    • Research-article

    Conference

    ISSAC'13
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 395 of 838 submissions, 47%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)3
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 18 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2018)What Can (and Can't) we Do with Sparse Polynomials?Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation10.1145/3208976.3209027(25-30)Online publication date: 11-Jul-2018
    • (2016)LacunaryxACM Communications in Computer Algebra10.1145/2893803.289380749:4(121-124)Online publication date: 17-Feb-2016
    • (2016)Bounded-degree factors of lacunary multivariate polynomialsJournal of Symbolic Computation10.1016/j.jsc.2015.11.01375:C(171-192)Online publication date: 1-Jul-2016
    • (2015)Deterministic Divisibility Testing via Shifted Partial DerivativesProceedings of the 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS.2015.35(451-465)Online publication date: 17-Oct-2015
    • (2014)Computing low-degree factors of lacunary polynomialsProceedings of the 39th International Symposium on Symbolic and Algebraic Computation10.1145/2608628.2608649(224-231)Online publication date: 23-Jul-2014

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media