[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2442829.2442871acmotherconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Programming before theorizing, a case study

Published: 22 July 2012 Publication History

Abstract

This paper relates how a "simple" result in combinatorial homotopy eventually led to a totally new understanding of basic theorems in Algebraic Topology, namely the Eilenberg-Zilber theorem, the twisted Eilenberg-Zilber theorem, and finally the Eilenberg-MacLane correspondance between the Classifying Space and Bar constructions. In the last case, it was an amazing lucky consequence of computations based on conjectures not yet proved. The key new tool used in this context is Robin Forman's Discrete Vector Fields theory.

References

[1]
F. A. Adams. On the Cobar construction. Proceedings of the National Academy of Science of the U.S.A., 42:409,412, 1956.
[2]
M. G. Barratt, V. K. A. M. Gugenheim, and J. C. Moore. On Semi-Simplicial Fibre Bundles. American Journal of Mathematics, 81:639,657, 1959.
[3]
H. J. Baues. Geometry of loop spaces and the cobar construction, volume 230 of Memoirs of the American Mathematical Society. AMS, 1980.
[4]
A. Berciano, J. Rubio, and F. Sergeraert. A case study of A -structure. Georgian Mathematical Journal, 17:57--77, 2010.
[5]
R. Brown. The twisted Eilenberg-Zilber theorem. In Celebrazioni Arch. Secolo XX, Simp. Top., pages 34--37, 1967.
[6]
E. Brown Jr. Finite computability of Postnikov complexes. Annals of Mathematics, 65:1--20, 1957.
[7]
E. Brown Jr. Twisted tensor products, I. Annals of Mathematics, 69:223--246, 1959.
[8]
X. Dousson, J. Rubio, F. Sergeraert, and Y. Siret. The Kenzo program. www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/.
[9]
S. Eilenberg and S. MacLane. On the groups H(π, n), I. Annals of Mathematics, 58:55--106, 1953.
[10]
S. Eilenberg and J. A. Zilber. Semi-simplicial complexes and singular homology. Annals of Mathematics, 51:499--513, 1950.
[11]
R. Forman. Morse theory for cell complexes. Advances in Mathematics, 134:90--145, 1998.
[12]
J. Milnor. Morse Theory, volume 51 of Annals of Mathematical Studies. Princeton University Press, 1963.
[13]
P. Real. Algoritmos de Cálculo de Homología Efectiva de los Espacios Clasificantes. Thesis Memoir, Sevilla, 1993. http://fondosdigitales.us.es/media/thesis/1426/C_043-139.pdf.
[14]
A. Romero and F. Sergeraert. Discrete Vector Fields and Fundamental Algebraic Topology. arxiv.org/abs/1005.5685/.
[15]
J. Rubio and F. Sergeraert. Constructive Algebraic Topology. Bulletin des Sciences Mathématiques, 126:389--412, 2002.
[16]
S. Saneblidze and R. Umble. Diagonals on the Permutahedra, Multiplihedra and Associahedra. Homology, Homotopy and Applications, 6:363--411, 2004.
[17]
R. Schön. Effective algebraic topology, volume 451 of Memoirs of the American Mathematical Society. AMS, 1991.
[18]
F. Sergeraert. The computability problem in algebraic topology. Advances in Mathematics, 104:1--29, 1994.
[19]
W. Shih. Homologie des espaces fibrés. Publications Mathématiques de l'IHES, 13, 1962.
[20]
J. R. Smith. Iterating the cobar construction, volume 524 of Memoirs of the American Mathematical Society. AMS, 1994.

Cited By

View all
  • (2018)The homological hexagonal lemmaGeorgian Mathematical Journal10.1515/gmj-2018-005525:4(603-622)Online publication date: 20-Sep-2018
  • (2018)A Combinatorial Tool for Computing the Effective Homotopy of Iterated Loop SpacesDiscrete & Computational Geometry10.1007/s00454-014-9650-153:1(1-15)Online publication date: 31-Dec-2018
  • (2017)A Bousfield---Kan Algorithm for Computing the Effective Homotopy of a SpaceFoundations of Computational Mathematics10.1007/s10208-016-9322-z17:5(1335-1366)Online publication date: 1-Oct-2017

Index Terms

  1. Programming before theorizing, a case study

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    ISSAC '12: Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation
    July 2012
    390 pages
    ISBN:9781450312691
    DOI:10.1145/2442829
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    • Grenoble University: Grenoble University
    • INRIA: Institut Natl de Recherche en Info et en Automatique

    In-Cooperation

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 22 July 2012

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Eilenberg-MacLane spaces
    2. Eilenberg-Zilber theorems
    3. bar construction
    4. classifying spaces
    5. constructive algebraic topology
    6. fibrations
    7. homotopy groups

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    ISSAC'12
    Sponsor:
    • Grenoble University
    • INRIA

    Acceptance Rates

    ISSAC '12 Paper Acceptance Rate 46 of 86 submissions, 53%;
    Overall Acceptance Rate 395 of 838 submissions, 47%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)1
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 01 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2018)The homological hexagonal lemmaGeorgian Mathematical Journal10.1515/gmj-2018-005525:4(603-622)Online publication date: 20-Sep-2018
    • (2018)A Combinatorial Tool for Computing the Effective Homotopy of Iterated Loop SpacesDiscrete & Computational Geometry10.1007/s00454-014-9650-153:1(1-15)Online publication date: 31-Dec-2018
    • (2017)A Bousfield---Kan Algorithm for Computing the Effective Homotopy of a SpaceFoundations of Computational Mathematics10.1007/s10208-016-9322-z17:5(1335-1366)Online publication date: 1-Oct-2017

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media