[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/1882992.1883079acmotherconferencesArticle/Chapter ViewAbstractPublication PagesihiConference Proceedingsconference-collections
poster

Improving disease surveillance capabilities through a public health information affinity domain

Published: 11 November 2010 Publication History

Abstract

In March 2009, deaths from influenza like illness began to mount in Mexico and the United States. In April, the National Respiratory Disease Institute [1] reported a 100 percent increase in patients checking in for atypical pneumonia. Samples were sent to laboratories in Canada and the United States. On April 17, a national influenza alert was announced; on April 23, the new influenza virus was officially recognized [2]. In Mexico City, where a three week surge of influenza accounted for 90,000 visits in 220 health units and 20 hospitals [3], Mayor Marcelo Ebrard ordered the temporary closure of schools and commercial establishments. In response to the pandemic, IBM collaborated with the Ciudad de México Gobierno del Distrito Federal Secretaria de Salud del Distrito Federal (Secretaria de Salud of GDF) [4] on software to standardize influenza reporting and improve situational awareness [5]. Secretaria de Salud of GDF installed IBM's Public Health Information Affinity Domain (PHIAD) that uses Health Information Exchange technology and standards to enable rapid data sharing of clinical surveillance data with public health officials [6]. De-identified 2009 H1N1 positive laboratory results from the Institute of Epidemiological Reference and Diagnosis [7] were provided by the Secretaria de Salud of GDF for import into PHIAD; each record was transformed into a standard Integrating the Healthcare Enterprise XD-LAB document. The standardized data was analyzed with Spatiotemporal Epidemiological Modeler (STEM), an open source software framework for infectious disease modeling and forecasting [8, 9]. Using STEM, we made quantitative measures of the policy effects of school and commercial closures in Mexico City on the transmission rate of the 2009 H1N1 virus.

References

[1]
Instituto Nacional de Enfermedades Respiratorias. http://www.iner.salud.gob.mx/
[2]
US CDC 2009 H1N1 virus announcement http://cdc.gov/h1n1flu/background.htm
[3]
Speech by Dr. Ahued (Mexico City HHS Secretary). 2010. Smarter Planet Series, New York City. http://www.ibm.com/ibm/ideasfromibm/us/smartplanet/cities/index3.shtml
[4]
Ciudad de México Gobierno del Distrito Federal. Secretaria de Salud del Distrito Federal http://www.salud.df.gob.mx/ssdf/
[5]
IBM/Mexico Collaboration Press Release. http://ibm1aonthenews.com/clipview.php?idxclip=16401
[6]
Carmeli, B., Eshel, T., Ford, D., Greenshpan, O., Kaufman, J., Knoop, S., Ram, R., Renly, S. 2007. Public health affinity domain: A standards-based surveillance system solution. In: Intelligence and Security Informatics: Biosurveillance, Proceedings of the Second NSF Workshop on Biosurveillance. Lecture Notes in Computer Science 4506:147--158. Springer: Berlin/Heidelberg.
[7]
Instituto de Diagnostico y Referencia Epidemiologicos (INDRE). http:www.cenaveco.salud.gob.mx/indre
[8]
Spatiotemporal Epidemiological Modeler (STEM). http://www.eclipse.org/stem/
[9]
Ford, D.A., Kaufman, J.H., and Eiron, I. 2006. An extensible spatial and temporal epidemiological modeling system. International Journal of Health Geographics 5:4. http://www.ij-healthgeographics.com/content/5/1/4
[10]
Integrating the Healthcare Enterprise (IHE). http://www.ihe.net
[11]
Middle East Consortium for Infectious Disease Surveillance (MECIDS). http://www.ghsi.org/projects/mecids.html
[12]
Integrating the Healthcare Enterprise XD-LAB. http://www.ihe.net/Technical_Framework/upload/ihe_lab_TF_rel2_1-vol-3_FT_2008-08-08.pdf
[13]
Health Level 7 CDA R3 Formal Proposals http://wiki.hl7.org/index.php?title=Category:CDA_R3_Formal_Proposals
[14]
Open Health Tools IHE Profiles. https://iheprofiles.projects.openhealthtools.org
[15]
IHE Multi-Patient Queries (MPQ) http://www.ihe.net/Technical_Framework/upload/IHE_IHI_TF_Supplement_MPQ_2009-08-10.pdf
[16]
IHE Retrief Form for Data Capture (RFD). http://www.ihe.net/Technical_Framework/upload/IHE_ITI_TF_Supplement_RFD_TI_2009-08-1.pdf
[17]
IHE Shared Value Sets (SVS). http://www.ihe.net/Technical_Framework/upload/IHE_ITI_TF_Supplement_Sharing_Value_Sets_SVS_TI_Draft_2009-08-10.pdf
[18]
HL7 Public Health Emergency Response (PHER). http://www.hl7.org/special/committees/pher/index.cfm
[19]
Open Health Tools Model Driven Health Tools (MDHT). https://mdht.projects.openhealthtools.org/
[20]
Edlund, S., Bromberg, M., Chodick, G., Douglas, J., Ford, D., Kaufman, Z., Lessler, J., Marom, R., Mesika, Y., Ram, R., Shalev, V., Kaufman, J. 2009. A spatiotemporal model for influenza. HIC 2009, Frontiers of Health Informatics, Canberra, Australia, August 19-21, 2009.
[21]
Anderson, R.M., May, R.M. 1991. Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford, New York.
[22]
Dushoff, J., Plotkin, J.B., Levin, S.A., Eam, J.D. 2004. Dynamic resonance can account for seasonality of influenza epidemics. PNAS 101 (48), 16915--16916.
[23]
Longini, I.M., Jr., Nizam, A. Xu, S., Ungchusak, K., Hanshaoworakul, W., Cumming, D.A.T., Halloran, M.E. 2005. Containing pandemic influenza at its source. Science 309 (5737), 1083--1087.
[24]
Mills, C.E., Robins, J.M., Lipsitch, M. 2004 Dec 16. Transmissibility of 1918 pandemic influenza. Nature 432 (7019), 904--905.
[25]
Truscott, J., Fraser, C., Hinsley, W., Cauchemez, S., Donnelly, C., Ghani, A., Ferguson, N., Meeyai, A. 2009. Quantifying the transmissibility of human influenza and its seasonal variation in temperate regions. PLoS Curr Influenza. PMCID: PMC2771768
[26]
Nicholson, K., Webster, R. G. & Hay, A. J. 1998. Textbook of Influenza. Blackwell Science, Malden, Massachusetts.
[27]
Cauchemez, S., Carrat, F., Viboud, C., Valleron, A.J., Boëlle, P.Y. 2004. A Bayesian MCMC approach to study transmission of influenza: application to household longitudinal data. Stat Med 23(22), 3469--87.
[28]
Ferguson, N. M., Cummings, D. A., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A., Iamsirithaworn, S., Burke, D.S. 2005. Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 437(7056), 209--214.
[29]
Smith, D.J., Lapedes, A.S., de Jong, J.D., Bestebroer, T.M., Rimmelzwaan, G.F., Osterhaus, A.D.M.E., Fouchier, R.A.M. 2004. Mapping the antigenic and genetic evolution of influenza virus. Science 305, 371--376.
[30]
Pease, C.M. 1987. An evolutionary epidemiological mechanism with applications to type A influenza. Theor Popul Biol 31, 422--452.
[31]
Koelle, K. Cobey, S. Grenfell, B., Pascual, M. 2006. Epochal evolution shapes the phylodynamics of interpandemic influenza A (H3N2) in humans. Science 316, 1898--1903.
[32]
Xia, Y., Gog, J.R., Grenfell, B.T. 2005. Semiparametric estimation of the duration of immunity from infectious disease time series: influenza as a case-study. Appl Statist 54(3), 659--672.
[33]
Dushoff, J., Plotkin, J.B., Levin, S.A., Eam, J.D. 2004 Nov 19. Dynamic resonance can account for seasonality of influenza epidemics. Proc Natl Acad Sci USA 101 (48), 16915--16916.
[34]
Cash, J.R., Karp, A.H. 1990. A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides. ACM Transactions on Mathematical Software 16: 201--222.
[35]
Cauchemez, S., Valleron, A.J., Boëlle, P.-Y., Flahault, A, and Ferguson, N.M. 2008. Estimating the impact of school closure on influenza transmission from sentinel data. Nature 452, 750--754.

Index Terms

  1. Improving disease surveillance capabilities through a public health information affinity domain

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    IHI '10: Proceedings of the 1st ACM International Health Informatics Symposium
    November 2010
    886 pages
    ISBN:9781450300308
    DOI:10.1145/1882992
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    In-Cooperation

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 11 November 2010

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. epidemiological modeling
    2. interoperability
    3. public health surveillance
    4. standards
    5. terminology

    Qualifiers

    • Poster

    Conference

    IHI '10
    IHI '10: ACM International Health Informatics Symposium
    November 11 - 12, 2010
    Virginia, Arlington, USA

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 200
      Total Downloads
    • Downloads (Last 12 months)2
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 21 Jan 2025

    Other Metrics

    Citations

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media