[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

FpVAT: a visual analytic tool for supporting frequent pattern mining

Published: 27 May 2010 Publication History

Abstract

As frequent pattern mining plays an essential role in many knowledge discovery and data mining (KDD) tasks, numerous algorithms for finding frequent patterns have been proposed over the past 15 years. However, most of these algorithms return the mining results in the form of textual lists containing frequent patterns showing those frequently occurring sets of items. It is well known that "a picture is worth a thousand words". The use of visual representation can enhance the user's understanding of the inherent relations in a collection of frequent patterns. In this paper, we develop a simple yet useful visual analytic tool for supporting frequent pattern mining called FpVAT. Such a visual analytic tool consists of two modules: One module gives users an overview so that they can derive insight from a massive amount of raw data; another module enables users to perform analytical reasoning on the mining results via interactive visual interfaces so that users can detect the expected frequent patterns and discover the unexpected frequent patterns. As a visual analytic tool, our FpVAT is equipped with several interactive features for effective visual support in the data analysis and KDD process for various real-life applications.

References

[1]
R. Agrawal & R. Srikant. Fast algorithms for mining association rules in large databases. In Proc. VLDB 1994, pp. 487--499.
[2]
C. Ahlberg. Spotfire: An information exploration environment. SIGMOD Record, 25(4), pp. 25--29, 1996.
[3]
M. Ankerst, C. Elsen, M. Ester & H.-P. Kriegel. Visual classification: An interactive approach to decision tree construction. In Proc. KDD 1999, pp. 392--396.
[4]
R.J. Bayardo Jr. Efficiently mining long patterns from databases. In Proc. ACM SIGMOD 1998, pp. 85--93.
[5]
J. Blanchard, F. Guillet & H. Briand. Interactive visual exploration of association rules with rule-focusing methodology. KAIS, 13(1), pp. 43--75, 2007.
[6]
C. Brunk, J. Kelly & R. Kohavi. MineSet: An integrated system for data mining. In Proc. KDD 1997, pp. 135--138.
[7]
S.-M. Chan, L. Xiao, J. Gerth & P. Hanrahan. Maintaining interactivity while exploring massive time series. In Proc. IEEE VAST 2008, pp. 59--66.
[8]
C.H. Chih & D.S. Parker. The persuasive phase of visualization. In Proc. KDD 2008, pp. 884--892.
[9]
J. Han, J. Pei, Y. Yin & R. Mao. Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Mining and Knowledge Discovery, 8(1), pp. 53--87, 2004.
[10]
T. Iwata, T. Yamada & N. Ueda. Probabilistic latent semantic visualization: Topic model for visualizing documents. In Proc. KDD 2008, pp. 363--371.
[11]
D.A. Keim. Information visualization and visual data mining. IEEE TVCG, 8(1), pp. 1--8, 2002.
[12]
D.A. Keim & H.-P. Kriegel. Visualization techniques for mining large databases: A comparison. IEEE TKDE, 8(6), pp. 923--938, 1996.
[13]
D. Keim & J. Schneidewind (eds.) Special issue on visual analytics. SIGKDD Explorations, 9(2), 2007.
[14]
Y. Koren & D. Harel. A two-way visualization method for clustered data. In Proc. KDD 2003, pp. 589--594.
[15]
L.V.S. Lakshmanan, C.K.-S. Leung & R.T. Ng. Efficient dynamic mining of constrained frequent sets. ACM TODS, 28(4), pp. 337--389, 2003.
[16]
L.V.S. Lakshmanan, C.K.-S. Leung & R.T. Ng. The segment support map: Scalable mining of frequent itemsets. SIGKDD Explorations, 2(2), pp. 21--27, 2000.
[17]
H. Lam, D. Russell, D. Tang & T. Munzner. Session viewer: Visual exploratory analysis of web session logs. In Proc. IEEE VAST 2007, pp. 147--154.
[18]
C.K.-S. Leung. Frequent itemset mining with constraints. In Encyclopedia of Database Systems, pp. 1179--1183, Springer, 2009.
[19]
C.K.-S. Leung & C.L. Carmichael. FpViz: A visualizer for frequent pattern mining. In Proc. VAKD 2009, pp. 30--39.
[20]
C.K.-S. Leung & B. Hao. Mining of frequent itemsets from streams of uncertain data. In Proc. IEEE ICDE 2009, pp. 1663--1670.
[21]
C.K.-S. Leung, P.P. Irani & C.L. Carmichael. FIsViz: A frequent itemset visualizer. In Proc. PAKDD 2008, pp. 644--652.
[22]
C.K.-S. Leung, P.P. Irani & C.L. Carmichael. WiFIs-Viz: Effective visualization of frequent itemsets. In Proc. IEEE ICDM 2008, pp. 875--880.
[23]
C.K.-S. Leung, L.V.S. Lakshmanan & R.T. Ng. Exploiting succinct constraints using FP-trees. SIGKDD Explorations, 4(1), pp. 40--49, 2002.
[24]
C.K.-S. Leung, M.A.F.Mateo & D.A. Brajczuk. A treebased approach for frequent pattern mining from uncertain data. In Proc. PAKDD 2008, pp. 653--661.
[25]
C.K.-S. Leung, R.T. Ng & H. Mannila. OSSM: A segmentation approach to optimize frequency counting. In Proc. IEEE ICDE 2002, pp. 583--592.
[26]
T. Munzner, Q. Kong, R.T. Ng, J. Lee, J. Klawe, D. Radulovic & C.K.-S. Leung. Visual mining of power sets with large alphabets. Tech. rep. UBC CS TR-2005-25, Dept. Computer Science, UBC, Canada, 2005.
[27]
D. Oelke, P. Bak, D.A. Keim, M. Last & G. Danon. Visual evaluation of text features for document summarization and analysis. In Proc. IEEE VAST 2008, pp. 75--82.
[28]
N. Pasquier, Y. Bastide, R. Taouil & L. Lakhal. Discovering frequent closed itemsets for association rules. In Proc. ICDT 1999, pp. 398--416.
[29]
K. Puolamäki (ed.) Proc. VAKD 2009.
[30]
J. Scholtz. Beyond usability: Evaluation aspects of visual analytic environments. In Proc. IEEE VAST 2006, pp. 145--150.
[31]
T. Schreck, J. Bernard, T. Tekusova & J. Kohlhammer. Visual cluster analysis of trajectory data with interactive Kohonen Maps. In Proc. IEEE VAST 2008, pp. 3--10.
[32]
R. Spence. Information Visualization: Design for Interaction, 2e. Prentice Hall, 2007.
[33]
C. Stolte, D. Tang & P. Hanrahan. Query, analysis, and visualization of hierarchically structured data using Polaris. In Proc. KDD 2002, pp. 112--122.
[34]
C. Ware, H. Purchase, L. Colpoys & M. McGill. Cognitive measurements of graph aesthetics. Information Visualization, 1(2), pp. 103--110, 2002.
[35]
P.C. Wong & J. Thomas. Visual analytics. IEEE CG&A, 24(5), pp. 20--21, 2004.
[36]
L. Yang. Pruning and visualizing generalized association rules in parallel coordinates. IEEE TKDE, 17(1), pp. 60--70, 2005.
[37]
X. Yang, S. Asur, S. Parthasarathy & S. Mehta. A visual-analytic toolkit for dynamic interaction graphs. In Proc. KDD 2008, pp. 1016--1024.
[38]
J. Yuan, Y. Wu & M. Yang. From frequent itemsets to semantically meaningful visual patterns. In Proc. KDD 2007, pp. 864--873.

Cited By

View all
  • (2023)Predictive big data analytics for drilling downhole problems: A reviewEnergy Reports10.1016/j.egyr.2023.05.0289(5863-5876)Online publication date: Dec-2023
  • (2022)Data. Information and Knowledge Visualization for Frequent Patterns2022 26th International Conference Information Visualisation (IV)10.1109/IV56949.2022.00045(221-226)Online publication date: Jul-2022
  • (2022)Mining the Impacts of COVID-19 Pandemic on the Labour Market2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM)10.1109/IMCOM53663.2022.9721772(1-8)Online publication date: 3-Jan-2022
  • Show More Cited By
  1. FpVAT: a visual analytic tool for supporting frequent pattern mining

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM SIGKDD Explorations Newsletter
    ACM SIGKDD Explorations Newsletter  Volume 11, Issue 2
    December 2009
    128 pages
    ISSN:1931-0145
    EISSN:1931-0153
    DOI:10.1145/1809400
    Issue’s Table of Contents

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 27 May 2010
    Published in SIGKDD Volume 11, Issue 2

    Check for updates

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)5
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 13 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Predictive big data analytics for drilling downhole problems: A reviewEnergy Reports10.1016/j.egyr.2023.05.0289(5863-5876)Online publication date: Dec-2023
    • (2022)Data. Information and Knowledge Visualization for Frequent Patterns2022 26th International Conference Information Visualisation (IV)10.1109/IV56949.2022.00045(221-226)Online publication date: Jul-2022
    • (2022)Mining the Impacts of COVID-19 Pandemic on the Labour Market2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM)10.1109/IMCOM53663.2022.9721772(1-8)Online publication date: 3-Jan-2022
    • (2022)Social Network Analysis on Interpretable Compressed Sparse NetworksProceedings of the 2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining10.1109/ASONAM55673.2022.10068716(324-331)Online publication date: 10-Nov-2022
    • (2022)Predictive Big Data Analytics for Service Requests: A FrameworkProcedia Computer Science10.1016/j.procs.2021.12.216198(102-111)Online publication date: 2022
    • (2022)Effectively and Efficiently Supporting Visual Big Data Analytics over Big Sequential Data: An Innovative Data Science ApproachComputational Science and Its Applications – ICCSA 202210.1007/978-3-031-10450-3_9(113-125)Online publication date: 4-Jul-2022
    • (2021)A Web Intelligence Solution to Support Recommendations from the WebIEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology10.1145/3498851.3498966(160-167)Online publication date: 14-Dec-2021
    • (2021)A mathematical model for friend discovery from dynamic social graphsProceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining10.1145/3487351.3489473(569-576)Online publication date: 8-Nov-2021
    • (2021)Compressing and mining social network dataProceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining10.1145/3487351.3489472(545-552)Online publication date: 8-Nov-2021
    • (2021)Interpretable Mining of Influential Patterns from Sparse WebIEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology10.1145/3486622.3494008(532-537)Online publication date: 14-Dec-2021
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media