[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Rethinking cost and performance of database systems

Published: 24 June 2009 Publication History

Abstract

Traditionally, database systems were optimized in the following way: "Given a set of machines, try to minimize the response time of each request." This paper argues that today, users would like a database system to optimize the opposite question: "Given a response time goal for each request, try to minimize the number of machines (i.e., cost in $)." Furthermore, this paper gives an example that demonstrates that the new optimization problem may result in a totally different system architecture.

References

[1]
Anon et al. A measure of transaction processing power. Datamation, 1984.
[2]
R. Avnur and J. Hellerstein. Eddies: Continuously adaptive query processing. In Proc. of ACM SIGMOD, pages 261--272, Jun 2000.
[3]
M. Brantner, D. Florescu, D. Graf, D. Kossmann, and T. Kraska. Building a database on S3. In Proc. of ACM SIGMOD, pages 251--264, Jun 2008.
[4]
F. Chu, J. Halpern, and J. Gehrke. Least expected cost query optimization: What can we expect? In Proc. of ACM PODS, pages 293--302, Jun 2002.
[5]
J. Doppelhammer, T. Höppler, A. Kemper, and D. Kossmann. Database performance in the real world: TPC-D and SAP R/3. In Proc. of ACM SIGMOD, pages 219--230, Jun 1997.
[6]
M. Franklin, B. Jonsson, and D. Kossmann. Performance tradeoffs for client-server query processing. In Proc. of ACM SIGMOD, pages 149--160, Jun 1996.
[7]
S. Gilbert and N. Lynch. Brewer's conjecture and the feasibility of consistent, available, partition-tolerant Web services. SIGACT News, 33(2):51--59, 2002.
[8]
P. Helland. Life beyond distributed transactions: An apostate's opinion. In Proc. of CIDR Conf., pages 132--141, Jan 2007.
[9]
A. Labrinidis, H. Qu, and J. Xu. Quality contracts for real-time enterpises. In Business Intelligence for the Real-Time Enterprises, pages 143--156, August 2007.
[10]
A. Labrinidis and N. Roussoupoulos. Webview materialization. In Proc. of ACM SIGMOD, pages 367--378, Jun 2000.
[11]
Q. Luo, S. Krshnamurthy, C. Mohan, H. Pirahesh, H. Woo, B. Lindsay, and J. Naughton. Middle-tier database caching for e-business. In Proc. of ACM SIGMOD, pages 600--611, Jun 2002.
[12]
M. Stonebraker, P. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Staelin, and A. Yu. Mariposa: A wide-area distributed database system. VLDB Journal, 5(1):48--63, 1996.
[13]
M. Stonebraker, C. Bear, U. Cetintemel, M. Cherniack, T. Ge, N. Hachem, S. Harizopoulos, J. Lifter, J. Rogers, and S. Zdonik. One size fits all? Part 2: Benchmarking studies. In Proc. of CIDR Conf., pages 173--184, Jan 2007.
[14]
M. Stonebraker, S. Madden, D. Abadi, S. Harizopoulos, N. Hachem, and P. Helland. The end of an architectural era (it's time for a complete rewrite). In Proc. of VLDB Conf., pages 1150--1160, Sep 2007.
[15]
A. Tanenbaum and M. van Steen. Distributed Systems: Principles and Paradigms. Prentice Hall, Upper Saddle River, NJ, 2002.
[16]
W. Vogels. Data access patterns in the Amazon.com technology platform. In Proc. of VLDB, page 1, Sep 2007.
[17]
K. Yagoub, D. Florescu, V. Issarny, and P. Valduriez. Caching strategies for data-intensive web sites. In Proc. of VLDB, pages 188--199, Sep 2000.

Cited By

View all
  • (2024)Vertically Autoscaling Monolithic Applications with CaaSPER: Scalable Container-as-a-Service Performance Enhanced Resizing Algorithm for the CloudCompanion of the 2024 International Conference on Management of Data10.1145/3626246.3653378(241-254)Online publication date: 9-Jun-2024
  • (2024)Caching in Forschung und IndustrieSchnelles und skalierbares Cloud-Datenmanagement10.1007/978-3-031-54388-3_5(91-140)Online publication date: 3-May-2024
  • (2023)Cloud Analytics BenchmarkProceedings of the VLDB Endowment10.14778/3583140.358315616:6(1413-1425)Online publication date: 1-Feb-2023
  • Show More Cited By

Index Terms

  1. Rethinking cost and performance of database systems

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM SIGMOD Record
    ACM SIGMOD Record  Volume 38, Issue 1
    March 2009
    54 pages
    ISSN:0163-5808
    DOI:10.1145/1558334
    Issue’s Table of Contents

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 24 June 2009
    Published in SIGMOD Volume 38, Issue 1

    Check for updates

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)21
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 07 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Vertically Autoscaling Monolithic Applications with CaaSPER: Scalable Container-as-a-Service Performance Enhanced Resizing Algorithm for the CloudCompanion of the 2024 International Conference on Management of Data10.1145/3626246.3653378(241-254)Online publication date: 9-Jun-2024
    • (2024)Caching in Forschung und IndustrieSchnelles und skalierbares Cloud-Datenmanagement10.1007/978-3-031-54388-3_5(91-140)Online publication date: 3-May-2024
    • (2023)Cloud Analytics BenchmarkProceedings of the VLDB Endowment10.14778/3583140.358315616:6(1413-1425)Online publication date: 1-Feb-2023
    • (2021)Capitalizing the database cost models process through a service‐based pipelineConcurrency and Computation: Practice and Experience10.1002/cpe.646335:11Online publication date: 11-Jul-2021
    • (2020)Concurrent Prefix RecoveryACM SIGMOD Record10.1145/3422648.342265349:1(16-23)Online publication date: 4-Sep-2020
    • (2020)Moving Database Cost Models from Darkness to LightSmart Applications and Data Analysis10.1007/978-3-030-45183-7_2(17-32)Online publication date: 4-Jun-2020
    • (2020)Caching in Research and IndustryFast and Scalable Cloud Data Management10.1007/978-3-030-43506-6_5(85-130)Online publication date: 15-May-2020
    • (2019)Improving the energy efficiency of relational and NoSQL databases via query optimizationsSustainable Computing: Informatics and Systems10.1016/j.suscom.2019.01.017Online publication date: Mar-2019
    • (2017)Cost-efficient enactment of stream processing topologiesPeerJ Computer Science10.7717/peerj-cs.1413(e141)Online publication date: 11-Dec-2017
    • (2017)Selective Data Consistency Model in No-SQL Data StorePrivacy and Security Policies in Big Data10.4018/978-1-5225-2486-1.ch006(124-147)Online publication date: 2017
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media