[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

A Multilevel Approach to Variance Reduction in the Stochastic Estimation of the Trace of a Matrix

Published: 01 January 2022 Publication History

Abstract

The trace of a matrix function $f(A)$, most notably of the matrix inverse, can be estimated stochastically using samples $x^*f(A)x$ if the components of the random vectors $x$ obey an appropriate probability distribution. However such a Monte Carlo sampling suffers from the fact that the accuracy depends quadratically on the samples used, thus making higher precision estimation very costly. In this paper, we suggest and investigate a multilevel Monte Carlo approach which uses a multigrid hierarchy to stochastically estimate the trace. This results in a substantial reduction of the variance, so that higher precision can be obtained with much less effort. We illustrate this for the trace of the inverse using three different classes of matrices.

References

[1]
C. Alexandrou, M. Constantinou, V. Drach, K. Hadjiyiannakou, K. Jansen, G. Koutsou, A. Strelchenko, and A. Vaquero, Evaluation of disconnected quark loops for hadron structure using GPUs, Comput. Phys. Commun., 185 (2014), pp. 1370--1382, https://doi.org/10.1016/j.cpc.2014.01.009.
[2]
H. Avron and S. Toledo, Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix, J. ACM, 58 (2011), 8.
[3]
R. Babich, J. Brannick, R. C. Brower, M. A. Clark, T. A. Manteuffel, S. F. McCormick, J. C. Osborn, and C. Rebbi, Adaptive multigrid algorithm for the lattice Wilson-Dirac operator, Phys. Rev. Lett., 105 (2010), 201602.
[4]
G. Bali, S. Collins, A. Frommer, K. Kahl, I. Kanamori, B. Müller, M. Rottmann, and J. Simeth, (Approximate) low-mode averaging with a new multigrid eigensolver, in 33rd International Symposium on Lattice Field Theory (LATTICE 2015), https://pos.sissa.it/251/350/, 2016.
[5]
S. Baral, T. Whyte, W. Wilcox, and R. B. Morgan, Disconnected loop subtraction methods in lattice QCD, Comput. Phys. Commun., 241 (2019), pp. 64--79.
[6]
C. Bekas, E. Kokiopoulou, and Y. Saad, An estimator for the diagonal of a matrix, Appl. Numer. Math., 57 (2007), pp. 1214--1229.
[7]
A. H. Bentbib, M. El Ghomari, K. Jbilou, and L. Reichel, Shifted extended global Lanczos processes for trace estimation with application to network analysis, Calcolo, 58 (2021), 4, https://doi.org/10.1007/s10092-020-00395-1.
[8]
D. Braess, Towards algebraic multigrid for elliptic problems of second order, Computing, 55 (1995), pp. 379--393, https://doi.org/10.1007/BF02238488.
[9]
M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge, Adaptive smoothed aggregation ($\alpha$SA) multigrid, SIAM Rev., 47 (2005), pp. 317--346, https://doi.org/10.1137/050626272.
[10]
J. Chen and Y. Saad, A posteriori error estimate for computing ${\rm tr}(f(A))$ by using the Lanczos method, Numer. Linear Algebra Appl., 25 (2018), e2170, https://doi.org/10.1002/nla.2170.
[11]
A. Cortinovis and D. Kressner, On randomized trace estimates for indefinite matrices with an application to determinants, Found. Comput. Math., 22 (2022), pp. 875--903, https://doi.org/10.1007/s10208-021-09525-9.
[12]
T. A. DeGrand and S. Schaefer, Improving meson two point functions in lattice QCD, Comput. Phys. Commun., 159 (2004), pp. 185--191, https://doi.org/10.1016/j.cpc.2004.02.006.
[13]
S. Dong and K. Liu, Stochastic estimation with ${Z}_2$ noise, Phys. Lett. B, 328 (1994), pp. 130--136.
[14]
E. Endress, C. Pena, and K. Sivalingam, Variance reduction with practical all-to-all lattice propagators, Comput. Phys. Commun., 195 (2015), pp. 35--48, https://doi.org/10.1016/j.cpc.2015.04.017.
[15]
E. Estrada, The Structure of Complex Networks: Theory and Applications, Oxford University Press, New York, 2011.
[16]
E. Estrada and D. J. Higham, Network properties revealed through matrix functions, SIAM Rev., 52 (2010), pp. 696--714, https://doi.org/10.1137/090761070.
[17]
A. Frommer, K. Kahl, S. Krieg, B. Leder, and M. Rottmann, Adaptive aggregation-based domain decomposition multigrid for the lattice Wilson--Dirac operator, SIAM J. Sci. Comput., 36 (2014), pp. A1581--A1608, https://doi.org/10.1137/130919507.
[18]
A. Frommer, C. Schimmel, and M. Schweitzer, Analysis of probing techniques for sparse approximation and trace estimation of decaying matrix functions, SIAM J. Matrix Anal. Appl., 42 (2021), pp. 1290--1318, https://doi.org/10.1137/20M1364461.
[19]
A. S. Gambhir, A. Stathopoulos, and K. Orginos, Deflation as a method of variance reduction for estimating the trace of a matrix inverse, SIAM J. Sci. Comput., 39 (2017), pp. A532--A558, https://doi.org/10.1137/16M1066361.
[20]
M. B. Giles, Multilevel Monte Carlo methods, Acta Numer., 24 (2015), pp. 259--328, https://doi.org/10.1017/S096249291500001X.
[21]
Y. Ginosar, I. Gutman, T. Mansour, and M. Schork, Estrada index and Chebyshev polynomials, Chem. Phys. Lett., 454 (2008), pp. 145--147.
[22]
L. Giusti, P. Hernandez, M. Laine, P. Weisz, and H. Wittig, Low-energy couplings of QCD from current correlators near the chiral limit, J. High Energy Phys., 2004 (2004), 013, https://doi.org/10.1088/1126-6708/2004/04/013.
[23]
G. H. Golub, M. Heath, and G. Wahba, Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics, 21 (1979), pp. 215--223.
[24]
G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed., Johns Hopkins Stud. Math. Sci., Johns Hopkins University Press, Baltimore, MD, 2013.
[25]
G. H. Golub and U. von Matt, Generalized cross-validation for large scale problems, J. Comput. Graph. Statist., 6 (1995), pp. 1--34.
[26]
E. Hallman and D. Troester, A multilevel approach to stochastic trace estimation, Linear Algebra Appl., 638 (2022), pp. 125--149.
[27]
I. Han, D. Malioutov, H. Avron, and J. Shin, Approximating spectral sums of large-scale matrices using stochastic Chebyshev approximations, SIAM J. Sci. Comput., 39 (2017), pp. A1558--A1585, https://doi.org/10.1137/16M1078148.
[28]
I. Han, D. Malioutov, and J. Shin, Large-scale log-determinant computation through stochastic Chebyshev expansions, in Proceedings of the International Conference on Machine Learning, 2015, pp. 908--917.
[29]
N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, 2008, https://doi.org/10.1137/1.9780898717778.
[30]
M. F. Hutchinson, A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines, Comm. Statist. Simulation Comput., 19 (1990), pp. 433--450, https://doi.org/10.1080/03610919008812866.
[31]
J. Laeuchli and A. Stathopoulos, Extending hierarchical probing for computing the trace of matrix inverses, SIAM J. Sci. Comput., 42 (2020), pp. A1459--A1485, https://doi.org/10.1137/18M1176427.
[32]
L. Lin, Y. Saad, and C. Yang, Approximating spectral densities of large matrices, SIAM Rev., 58 (2016), pp. 34--65, https://doi.org/10.1137/130934283.
[33]
Q. Liu, W. Wilcox, and R. Morgan, Polynomial Subtraction Method for Disconnected Quark Loops, preprint, https://arxiv.org/abs/1405.1763, 2014.
[34]
R. A. Meyer, C. Musco, C. Musco, and D. P. Woodruff, Hutch++: Optimal stochastic trace estimation, in Symposium on Simplicity in Algorithms (SOSA), SIAM, Philadelphia, 2021, pp. 142--155, https://doi.org/10.1137/1.9781611976496.16.
[35]
L. N. Olson and J. B. Schroder, PyAMG: Algebraic Multigrid Solvers in Python v4.0, https://github.com/pyamg/pyamg, 2018.
[36]
C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning), The MIT Press, Cambridge, MA, 2005.
[37]
E. Romero, A. Stathopoulos, and K. Orginos, Multigrid deflation for lattice QCD, J. Comput. Phys., 409 (2020), 109356, https://doi.org/10.1016/j.jcp.2020.109356.
[38]
F. Roosta Khorasani and U. Ascher, Improved bounds on sample size for implicit matrix trace estimators, Found. Comput. Math., 15 (2015), pp. 1187--1212.
[39]
H. Rue and L. Held, Gaussian Markov Random Fields: Theory And Applications, CRC Press, Boca Raton, FL, 2005.
[40]
Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003, https://doi.org/10.1137/1.9780898718003.
[41]
B. Sapoval, T. Gobron, and A. Margolina, Vibrations of fractal drums, Phys. Rev. Lett., 67 (1991), pp. 2974--2977.
[42]
J. Schwinger, Gauge invariance and mass II, Phys. Rev. (2), 128 (1962), p. 2425--2429, https://doi.org/10.1103/PhysRev.128.2425.
[43]
J. Sexton and D. Weingarten, Systematic Expansion for Full QCD Based on the Valence Approximation, preprint, 1994, https://arxiv.org/abs/hep-lat/9411029, 1994.
[44]
A. Stathopoulos, J. Laeuchli, and K. Orginos, Hierarchical probing for estimating the trace of the matrix inverse on toroidal lattices, SIAM J. Sci. Comput., 35 (2013), pp. S299--S322, https://doi.org/10.1137/120881452.
[45]
J. M. Tang and Y. Saad, A probing method for computing the diagonal of a matrix inverse, Numer. Linear Algebra Appl., 19 (2012), pp. 485--501.
[46]
U. Trottenberg, C. Oosterlee, and A. Schuller, Multigrid, Academic Press, New York, 2000.
[47]
S. Ubaru, J. Chen, and Y. Saad, Fast estimation of $\mathrm{tr}(f({A}))$ via stochastic Lanczos quadrature, SIAM J. Matrix Anal. Appl., 38 (2017), pp. 1075--1099, https://doi.org/10.1137/16M1104974.
[48]
S. Ubaru and Y. Saad, Applications of trace estimation techniques, in International Conference on High Performance Computing in Science and Engineering, Springer, Cham, 2017, pp. 19--33.
[49]
W. Wilcox, Noise Methods for Flavor Singlet Quantities, preprint, https://arxiv.org/abs/hep-lat/9911013v2, 1999.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image SIAM Journal on Scientific Computing
SIAM Journal on Scientific Computing  Volume 44, Issue 4
Aug 2022
1278 pages
ISSN:1064-8275
DOI:10.1137/sjoce3.44.4
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2022

Author Tags

  1. multilevel Monte Carlo
  2. trace
  3. variance reduction
  4. sparse matrices
  5. algebraic multigrid
  6. Hutchinson's method

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media