[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

A Power Schur Complement Low-Rank Correction Preconditioner for General Sparse Linear Systems

Published: 01 January 2021 Publication History

Abstract

A parallel preconditioner is proposed for general large sparse linear systems that combines a power series expansion method with low-rank correction techniques. To enhance convergence, a power series expansion is added to a basic Schur complement iterative scheme by exploiting a standard matrix splitting of the Schur complement. One of the goals of the power series approach is to improve the eigenvalue separation of the preconditioner thus allowing an effective application of a low-rank correction technique. Experiments indicate that this combination can be quite robust when solving highly indefinite linear systems. The preconditioner exploits a domain-decomposition approach, and its construction starts with the use of a graph partitioner to reorder the original coefficient matrix. In this framework, unknowns corresponding to interface variables are obtained by solving a linear system whose coefficient matrix is the Schur complement. Unknowns associated with the interior variables are obtained by solving a block diagonal linear system where parallelism can be easily exploited. Numerical examples are provided to illustrate the effectiveness of the proposed preconditioner, with an emphasis on highlighting its robustness properties in the indefinite case.

References

[1]
P. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J. Y. L'Excellent, and C. Weisbecker, Improving multifrontal methods by means of block low-rank representations, SIAM J. Sci. Comput., 37 (2015), pp. A1451--A1474.
[2]
P. Amestoy, A. Buttari, J. Y. L'Excellent, and T. Mary, Performance and scalability of the block low-rank multifrontal factorization on multicore architectures, ACM Trans. Math. Software, 45 (2019), pp. 1--26.
[3]
A. Aminfar, S. Ambikasaran, and E. Darve, A fast block low-rank dense solver with applications to finite-element matrices, J. Comput. Phys., 304 (2016), pp. 170--188.
[4]
M. Bebendorf, Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems, Lect. Notes Comput. Sci. Eng., Springer, Berlin, 2008.
[5]
M. Benzi and M. Tuma, A sparse approximate inverse preconditioner for nonsymmetric linear systems, SIAM J. Sci. Comput., 19 (1998), pp. 968--994.
[6]
S. L. Borne and L. Grasedyck, $\mathcal{H}$-matrix preconditioners in convection-dominated problems, SIAM J. Matrix Anal. Appl., 27 (2006), pp. 1172--1183.
[7]
D. Cai, E. Chow, L. Erlandson, Y. Saad, and Y. Xi, SMASH: Structured matrix approximation by separation and hierarchy, Numer. Linear Algebra Appl., 25 (2018), e2204.
[8]
E. Chow and Y. Saad, Approximate inverse preconditioners via sparse-sparse iterations, SIAM J. Sci. Comput., 19 (1998), pp. 995--1023.
[9]
T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math. Software, 38 (2011) 1.
[10]
G. Dillon, V. Kalantzis, Y. Xi, and Y. Saad, A hierarchical low-rank Schur complement preconditioner for indefinite linear systems, SIAM J. Sci. Comput., 40 (2018), pp. A2234--A2252.
[11]
A. Franceschini, V. A. P. Magri, M. Ferronato, and C. Janna, A robust multilevel approximate inverse preconditioner for symmetric positive definite matrices, SIAM J. Matrix Anal. Appl., 39 (2018), pp. 123--147.
[12]
P. Ghysels, X. S. Li, F. H. Rouet, S. Williams, and A. Napov, An efficient multicore implementation of a novel HSS-structured multifrontal solver using randomized sampling, SIAM J. Sci. Comput., 38 (2016), pp. S358--S384.
[13]
A. Gillman, P. Young, and P. G. Martinsson, A direct solver with $\mathcal{O}$(n) complexity for integral equations on one-dimensional domains, Front. Math. China, 7 (2012), pp. 217--247.
[14]
M. Grote and T. Huckle, Parallel preconditioning with sparse approximate inverses, SIAM J. Sci. Comput., 18 (1997), pp. 838--853.
[15]
W. Hackbusch and S. Börm, $\mathcal{H}^2$-matrix approximation of integral operators by interpolation, Appl. Numer. Math., 43 (2002), pp. 129--143.
[16]
J. C. Haws, M. Benzi, and M. Tuma, Preconditioning highly indefinite and nonsymmetric matrices, SIAM J. Sci. Comput., 22 (2000), pp. 1333--1353.
[17]
N. J. Higham and T. Mary, A new preconditioner that exploits low-rank approximations to factorization error, SIAM J. Sci. Comput., 41 (2019), pp. A59--A82.
[18]
Z. Jia and W. J. Kang, A residual based sparse approximate inverse preconditioning procedure for large sparse linear systems, Numer. Linear Algebra Appl., 24 (2017), e2080.
[19]
G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput., 20 (1998), pp. 359--392.
[20]
R. Li, Y. Xi, and Y. Saad, Schur complement-based domain decomposition preconditioners with low-rank corrections, Numer. Linear Algebra Appl., 23 (2016), pp. 706--729.
[21]
X. Liu, Y. Xi, Y. Saad, and M. V. de Hoop, Solving the three-dimensional high-frequency Helmholtz equation using contour integration and polynomial preconditioning, SIAM J. Matrix Anal. Appl., 41 (2020), pp. 58--82.
[22]
X. Liu, J. Xia, and M. V. de Hoop, Parallel randomized and matrix-free direct solvers for large structured dense linear systems, SIAM J. Sci. Comput., 38 (2016), pp. S508--S538.
[23]
P. G. Martinsson and V. Rokhlin, A fast direct solver for boundary integral equations in two dimensions, J. Comput. Phys., 205 (2005), pp. 1--23.
[24]
G. Pichon, E. Darve, M. Faverge, P. Ramet, and J. Roman, Sparse supernodal solver using block low-rank compression: Design, performance and analysis, J. Comput. Sci., 27 (2018), pp. 255--270.
[25]
Y. Saad, ILUT: A dual threshold incomplete ILU factorization, Numer. Linear Algebra Appl., 1 (1994), pp. 387--402.
[26]
Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelpha, PA, 2003.
[27]
Y. Saad and B. Suchomel, ARMS: An algebraic recursive multilevel solver for general sparse linear systems, Numer. Linear Algebra Appl., 9 (2002), pp. 359--378.
[28]
Y. Xi, R. Li, and Y. Saad, An algebraic multilevel preconditioner with low-rank corrections for sparse symmetric matrices, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 235--259.
[29]
Y. Xi and Y. Saad, A rational function preconditioner for indefinite sparse linear systems, SIAM J. Sci. Comput., 39 (2017), pp. A1145--A1167.
[30]
Y. Xi and J. Xia, On the stability of some hierarchical rank structured matrix alogrithms, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 1279--1303.
[31]
J. Xia, Efficient structured multifrontal factorization for general large sparse matrices, SIAM J. Sci. Comput., 35 (2013), pp. A832--A860.
[32]
J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Superfast multifrontal method for large structured linear systems of equations, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 1382--1411.
[33]
J. Xia, Y. Xi, S. Cauley, and V. Balakrishnan, Fast sparse selected inversion, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 1283--1314.
[34]
J. Xia and Z. Xin, Effective and robust preconditioning of general spd matrices via structured incomplete factorization, SIAM J. Matrix Anal. Appl., 38 (2017), pp. 1298--1322.

Cited By

View all
  • (2024)Power Variable Projection for Initialization-Free Large-Scale Bundle AdjustmentComputer Vision – ECCV 202410.1007/978-3-031-72624-8_7(111-126)Online publication date: 29-Sep-2024
  • (2023)A low-rank update for relaxed Schur complement preconditioners in fluid flow problemsNumerical Algorithms10.1007/s11075-023-01548-394:4(1597-1618)Online publication date: 1-Dec-2023

Index Terms

  1. A Power Schur Complement Low-Rank Correction Preconditioner for General Sparse Linear Systems
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image SIAM Journal on Matrix Analysis and Applications
        SIAM Journal on Matrix Analysis and Applications  Volume 42, Issue 2
        DOI:10.1137/sjmael.42.2
        Issue’s Table of Contents

        Publisher

        Society for Industrial and Applied Mathematics

        United States

        Publication History

        Published: 01 January 2021

        Author Tags

        1. low-rank correction
        2. Schur complement
        3. power series expansion
        4. domain decomposition
        5. parallel preconditioner
        6. Krylov subspace method

        Author Tag

        1. 65F10

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 05 Feb 2025

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)Power Variable Projection for Initialization-Free Large-Scale Bundle AdjustmentComputer Vision – ECCV 202410.1007/978-3-031-72624-8_7(111-126)Online publication date: 29-Sep-2024
        • (2023)A low-rank update for relaxed Schur complement preconditioners in fluid flow problemsNumerical Algorithms10.1007/s11075-023-01548-394:4(1597-1618)Online publication date: 1-Dec-2023

        View Options

        View options

        Figures

        Tables

        Media

        Share

        Share

        Share this Publication link

        Share on social media