[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Error Analysis of a Mixed Finite Element Method for the Molecular Beam Epitaxy Model

Published: 01 January 2015 Publication History

Abstract

This paper investigates the error analysis of a mixed finite element method with Crank--Nicolson time-stepping for simulating the molecular beam epitaxy (MBE) model. The fourth-order differential equation of the MBE model is replaced by a system of equations consisting of one nonlinear parabolic equation and an elliptic equation. Then a mixed finite element method requiring only continuous elements is proposed to approximate the resulting system. It is proved that the semidiscrete and fully discrete versions of the numerical schemes satisfy the nonlinearity energy stability property, which is important in the numerical implementation. Moreover, detailed analysis is provided to obtain the convergence rate. Numerical experiments are carried out to validate the theoretical results.

References

[1]
R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[2]
P. Aviles and Y. Giga, A mathematical problem related to the physical theory of liquid crystal configurations, Proc. Centre Math. Anal. Austral. Nat. Univ., 12 (1987), pp. 1--16.
[3]
G. S. Ball and R. D. James, Proposed experimental tests of a theory of fine microstructure and the two-well problem, Philos. Trans. R. Soc. London Ser. A, 338 (1992), pp. 389--450.
[4]
H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations, Cambridge University Press, Cambridge, UK, 2004.
[5]
R. E. Caflisch, M. F. Gyure, B. Merriman, S. J. Osher, C. Ratsch, D. D. Vvedensky, and J. J. Zinch, Island dynamics and the level set method for epitaxial growth, Appl. Math. Lett., 12 (1999), pp. 13--22.
[6]
W. Chen, S. Conde, C. Wang, X. Wang, and S. Wise, A linear energy stable scheme for a thin film model without slope selection, J. Sci. Comput., 52 (2012), pp 546--562.
[7]
W. Chen and Y. Wang, A mixed finite element method for thin film epitaxy, Numer. Math., 122 (2012), pp. 771--793.
[8]
P. G. Ciarlet and J. L. Lions, eds., Finite Element Methods, Handb. Numer. Anal. II., North--Holland, Amsterdam, 1991.
[9]
S. Clarke and D. D. Vvedensky, Origin of reflection high-energy electron-diffraction intensity oscillations during molecular-beam epitaxy: A computational modeling approach, Phys. Rev. Lett., 58 (1987), pp. 2235--2238.
[10]
C. Collins, J. Shen, and S. Wise, An efficient, energy stable scheme for the Cahn-Hilliard-Brinkman system, Commun. Comput. Phys., 13 (2013), pp. 929--957.
[11]
Q. Du and R. A. Nicolaides, Numerical analysis of a continuum model of phase transition, SIAM J. Numer. Anal., 28 (1991), pp. 1310--1322.
[12]
C. M. Elliott, D. A. French, and F. A. Milner, A second order splitting method for the Cahn-Hilliard equation, Numer. Math., 54 (1989), pp. 575--590.
[13]
X. B. Feng and A. Prohl, Error analysis of a mixed finite element method for the Cahn-Hilliard equation, Numer. Math., 99 (2004), pp. 47--84.
[14]
X. B. Feng and H. J. Wu, A posteriori error estimates for finite element approximations of the Cahn-Hilliard equation and the Hele-Shaw flow, J. Comput. Math., 26 (2008), pp. 767--796.
[15]
G. Gioia and M. Ortiz, Delamination of compressed thin films, Adv. Appl. Mech., 33 (1997), pp. 119--192.
[16]
L. Golubovic, A. Levandovsky, and D. Moldovan, Interface dynamics and far-from-equilibrium phase transitions in multilayer epitaxial growth and erosion on crystal surfaces: Continuum theory insights, East Asian J. Appl. Math., 1 (2011), pp. 297--371.
[17]
Y. He, Y. Liu, and T. Tang, On large time-stepping methods for the Cahn-Hilliard equation, Appl. Numer. Math., 57 (2007), pp. 616--628.
[18]
W. Jin and R. V. Kohn, Singular perturbation and the energy of folds, J. Nonlinear Sci., 10 (2000), pp. 355--390.
[19]
S. Kesavan, Topics in Functional Analysis and Applications, Wiley Eastern Limited, New Delhi, India, 1989.
[20]
R. Kohn, Energy-driven pattern formulation, in Proceedings of the International Congress of Mathematicians, Madrid, Spain, 2006, M. Sanz-Sole, J. Soria, J. L. Varona, and J. Verdera, eds., 2007, pp. 359--384.
[21]
R. Kohn and S. Müller, Surface energy and microstructure in coherent phase transitions, Comm. Pure Appl. Math., 47 (1994), pp. 405--435.
[22]
R. Kohn and F. Otto, Upper bounds on coarsening rates, Comm. Math. Phys., 229 (2002), pp. 375--395.
[23]
B. Li and J.-G. Liu, Thin film epitaxy with or without slope selection, European J. Appl. Math., 14 (2003), pp. 713--743.
[24]
S. E. Minkoff and N. M. Kridler, A comparison of adaptive time stepping methods for coupled flow and deformation modeling, Appl. Math. Modeling, 30 (2006), pp. 993--1009.
[25]
D. Moldovan and L. Golubovic, Interfacial coarsening dynamics in epitaxial growth with slope selection, Phys. Rev. E, 61 (2000), pp. 6190--6214.
[26]
Z. Qiao, Z. Zhang, and T. Tang, An adaptive time-stepping strategy for the molecular beam epitaxy models, SIAM J. Sci. Comput., 33 (2011), pp. 1395--1414.
[27]
J. Shen, C. Wang, X. Wang, and S. M. Wise, Second-order convex splitting schemes for gradient flows with Ehrlich--Schwoebel type energy: Application to thin film epitaxy, SIAM J. Numer. Anal., 50 (2012), pp. 105--125.
[28]
G. Söderlind, Automatic control and adaptive time-stepping, Numer. Algorithms, 31 (2002), pp. 281--310.
[29]
Z. J. Tan, Z. R. Zhang, Y. Q. Huang, and T. Tang, Moving mesh methods with locally varying time steps, J. Comput. Phys., 200 (2004), pp. 347--367.
[30]
C. Wang, X. Wang, and S. Wise, Unconditionally stable schemes for equations of thin film epitaxy, Discrete Contin. Dyn. Syst. Ser. A, 28 (2010), pp. 405--423.
[31]
S. M. Wise, C. Wang, and J. S. Lowengrub, An energy-stable and convergent finite-difference scheme for the phase field crystal equation, SIAM J. Numer. Anal., 47 (2009), pp. 2269--2288.
[32]
C. Xu and T. Tang, Stability analysis of large time-stepping methods for epitaxial growth models, SIAM J. Numer. Anal., 44 (2006), pp. 1759--1779.
[33]
J. Zhu, L. Q. Chen, and V. Tikare, Coarsening kinetics from variable-mobility Cahn-Hilliard equations: Application of a semi-implicit Fourier spectral method, Phys. Rev. E, 60 (1999), pp. 3564--3572.

Cited By

View all
  • (2024)Numerical analysis of a second-order energy-stable finite element method for the Swift-Hohenberg equationApplied Numerical Mathematics10.1016/j.apnum.2023.11.014197:C(119-142)Online publication date: 1-Mar-2024
  • (2022)Error Estimate of Exponential Time Differencing Runge-Kutta Scheme for the Epitaxial Growth Model Without Slope SelectionJournal of Scientific Computing10.1007/s10915-022-01977-793:1Online publication date: 1-Oct-2022

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image SIAM Journal on Numerical Analysis
SIAM Journal on Numerical Analysis  Volume 53, Issue 1
2015
633 pages
ISSN:0036-1429
DOI:10.1137/sjnaam.53.1
Issue’s Table of Contents

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 January 2015

Author Tags

  1. molecular beam epitaxy
  2. error analysis
  3. mixed finite element
  4. Crank--Nicolson
  5. unconditionally energy stable

Author Tags

  1. 35Q99
  2. 65N30
  3. 65M12
  4. 65M70

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 22 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Numerical analysis of a second-order energy-stable finite element method for the Swift-Hohenberg equationApplied Numerical Mathematics10.1016/j.apnum.2023.11.014197:C(119-142)Online publication date: 1-Mar-2024
  • (2022)Error Estimate of Exponential Time Differencing Runge-Kutta Scheme for the Epitaxial Growth Model Without Slope SelectionJournal of Scientific Computing10.1007/s10915-022-01977-793:1Online publication date: 1-Oct-2022

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media