[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Dynamics of the Nematic-Isotropic Sharp Interface for the Liquid Crystal

Published: 01 January 2015 Publication History

Abstract

In this paper, we derive the sharp interface model of the nematic-isotropic phase transition from the Landau--de Gennes theory by using the matched asymptotic expansion method. The model includes the evolution equation of the velocity and director field of the liquid crystal, the sharp interface, and the Young--Laplace jump condition on the interface.

References

[1]
N. D. Alikakos, P. W. Bates, and X. Chen, Convergence of the Cahn--Hilliard equation to the Hele--Shaw model, Arch. Ration. Mech. Anal., 128 (1994), pp. 165--205.
[2]
J. M. Ball and A. Majumdar, Nematic liquid crystals: From Maier--Saupe to a continuum theory, Mol. Cryst. Liq. Cryst., 525 (2010), pp. 1--11.
[3]
J. M. Ball and A. Zarnescu, Orientability and energy minimization in liquid crystal models, Arch. Ration. Mech. Anal., 202 (2011), pp. 493--535.
[4]
A. N. Beris and B. J. Edwards, Thermodynamics of Flowing Systems with Internal Microstructure, Oxf. Engrg. Sci. Ser. 36, Oxford University Press, Oxford, 1994.
[5]
A. Berti, V. Berti, and D. Grandi, A thermodynamic approach to isotropic-nematic phase transitions in liquid crystals, Meccanica, 48 (2013), pp. 983--991.
[6]
P. Cermelli, E. Fried, and M. E. Gurtin, Sharp-interface nematic-isotropic phase transitions without flow, Arch. Ration. Mech. Anal., 174 (2004), pp. 151--178.
[7]
E. Fried, Sharp-interface nematic-isotropic phase transitions with flow, Arch. Ration. Mech. Anal., 190 (2008), pp. 227--265.
[8]
P. G. De Gennes, The Physics of Liquid Crystals, Clarendon Press, Oxford, 1974.
[9]
J. Ericksen, Conservation laws for liquid crystals, Trans. Soc. Rheol., 5 (1961), pp. 22--34.
[10]
J. Feng, C. V. Chaubal, and L. G. Leal, Closure approximations for the Doi theory: Which to use in simulating complex flows of liquid-crystalline polymers, J. Rheology, 42 (1998), pp. 1095--1109.
[11]
J. J. Feng, G. L. Leal, and G. Sgalari, A theory for flowing nematic polymers with orientational distortion, J. Rheology, 44 (2000), pp. 1085--1101.
[12]
G. Iyer, X. Xu, and A. Zarnescu, Dynamic cubic instability in a $2$D Q-tensor model for liquid crystals, preprint, arXiv:1406.4571.
[13]
S. M. Kamil, A. K. Bhattacharjee, R. Adhikari, and G. I. Menona, The isotropic-nematic interface with an oblique anchoring condition, J. Chem. Phys., 131 (2009), 174701.
[14]
F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968), pp. 265--283.
[15]
F.-H. Lin, C. Wang, and X. Pan, Phase transition for potentials of high-dimension wells, Comm. Pure Appl. Math., 65 (2012), pp. 833--888.
[16]
H. Liu, H. Zhang, and P. Zhang, Axial symmetry and classification of stationary solutions of Doi--Onsager equation on the sphere with Maier--Saupe potential, Comm. Math. Sci., 3 (2005), pp. 201--218.
[17]
J. Han, Y. Luo, W. Wang, P. Zhang, and Z. Zhang, From microscopic theory to macroscopic theory: A systematic study on modeling for liquid crystals, Arch. Ration. Mech. Anal., 215 (2015), pp. 741--809.
[18]
S. Mkaddem and E. C. Gartland, Fine structure of defects in radial nematic droplets, Phys. Rev. E, 62 (2000), pp. 6694--6705.
[19]
N. J. Mottram and C. Newton, Introduction to Q-tensor Theory, University of Strathclyde, Department of Mathematics, Research report 10, 2004.
[20]
L. Nguyen and A. Zarnescu, Refined approximation for a class of Landau--de Gennes energy minimizers, Calc. Var. Partial Differential Equations, 47 (2013), pp. 383--432.
[21]
L. Onsager, The effects of shape on the interaction of colloidal particles, Ann. NY Acad. Sci., 51 (1949), pp. 627--659.
[22]
M. Paicu and A. Zarnescu, Energy dissipation and regularity for a coupled Navier--Stokes and Q-tensor system, Arch. Ration. Mech. Anal., 203 (2012), pp. 45--67.
[23]
J. Park, W. Wang, P. Zhang, and Z. Zhang, On minimizers for the isotropic-nematic interface problem, preprint.
[24]
V. Popa-Nita, T. J. Sluckin, and A. A. Wheeler, Statics and kinetics at the nematic-isotropic interface: Effects of biaxiality, J. Phys. II, 7 (1997), pp. 1225--1243.
[25]
T. Qian and P. Sheng, Generalized hydrodynamic equations for nematic liquid crystals, Phys. Rev. E, 58 (1998), pp. 7475--7485.
[26]
A. D. Rey, Young--Laplace equation for liquid crystal interfaces, J. Chem. Phys., 113 (2000), pp. 10820--10822.
[27]
J. Rubinstein, P. Sternberg, and J. B. Keller, Fast reaction, slow diffusion and curve shortening, SIAM J. Appl. Math., 49 (1989), pp. 116--133.
[28]
W. Wang, P. Zhang, and Z. Zhang, Rigorous derivation from Landau-de Gennes theory to Ericksen-Leslie theory, SIAM J. Math. Anal., 47 (2015), pp. 127--158.

Index Terms

  1. Dynamics of the Nematic-Isotropic Sharp Interface for the Liquid Crystal
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Please enable JavaScript to view thecomments powered by Disqus.

            Information & Contributors

            Information

            Published In

            cover image SIAM Journal on Applied Mathematics
            SIAM Journal on Applied Mathematics  Volume 75, Issue 4
            DOI:10.1137/smjmap.75.4
            Issue’s Table of Contents

            Publisher

            Society for Industrial and Applied Mathematics

            United States

            Publication History

            Published: 01 January 2015

            Author Tags

            1. liquid crystal
            2. nematic-isotropic phase transition
            3. Landau--de Gennes
            4. sharp interface

            Author Tags

            1. 76A15
            2. 82C26

            Qualifiers

            • Research-article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • 0
              Total Citations
            • 0
              Total Downloads
            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 17 Feb 2025

            Other Metrics

            Citations

            View Options

            View options

            Figures

            Tables

            Media

            Share

            Share

            Share this Publication link

            Share on social media