[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Bounds and Approximations for Multistage Stochastic Programs

Published: 01 January 2016 Publication History

Abstract

Consider (typically large) multistage stochastic programs, which are defined on scenario trees as the basic data structure. It is well known that the computational complexity of the solution depends on the size of the tree, which itself increases typically exponentially fast with its height, i.e., the number of decision stages. For this reason approximations which replace the problem by a simpler one and allow bounding the optimal value are of great importance. In this paper we study several methods to obtain lower and upper bounds for multistage stochastic programs and we demonstrate their use in a multistage inventory problem.

References

[1]
K. M. Anstreicher, Linear programming in $O(n^3/ln \,n \cdot L)$ operations, SIAM J. Optim., 9 (1999), pp. 803--812.
[2]
J. R. Birge, The value of the stochastic solution in stochastic linear programs with fixed recourse, Math. Program., 24 (1982), pp. 314--325.
[3]
J. R. Birge and F. Louveaux, Introduction to Stochastic Programming, Springer-Verlag, New York, 1997.
[4]
D. Dentcheva and A. Ruszczyński, Optimization with stochastic dominance constraints, SIAM J. Optim., 14 (2003), pp. 548--566.
[5]
L. F. Escudero, A. Garín, M. Merino, and G. Pérez, The value of the stochastic solution in multistage problems, TOP, 15 (2007), pp. 48--64.
[6]
K. Frauendorfer and M. Schürle, Multistage stochastic programming: Barycentric approximation, in Encyclopedia of Optimization, Vol. 3, P. Pardalos, and C. A. Floudas eds., Kluwer Academic, Dordrecht, the Netherlands, 2001, pp. 576--580.
[7]
D. Kuhn, Generalized Bounds for Convex Multistage Stochastic Programs, Lecture Notes in Economi. and Math. Systems 548, Springer-Verlag, Berlin, 2005.
[8]
D. Kuhn, Aggregation and discretization in multistage stochastic programming, Math. Program. Ser. A, 113 (2008), pp. 61--94.
[9]
D. Kuhn, An information-based approximation scheme for stochastic optimization problems in continuous time, Math. Oper. Res., 34 (2009), pp. 428--444.
[10]
F. Maggioni and W. S. Wallace, Analyzing the quality of the expected value solution in stochastic programming, Ann. Oper. Res., 200 (2012), pp. 37--54.
[11]
F. Maggioni, E. Allevi, and M. Bertocchi, Bounds in multistage linear stochastic programming, J. Optim. Theory Appl., 163 (2014), pp. 200--229.
[12]
W. K. Mak, D. P. Morton, and R. K. Wood, Monte Carlo bounding techniques for determining solution quality in stochastic programs, Oper. Res. Lett., 24 (1999), pp. 47--56.
[13]
D. P. Morton and R. K. Wood, Restricted-recourse bounds for stochastic linear programming, Oper. Res., 47 (1999), pp. 943--956.
[14]
G. Ch. Pflug, A. Ruszczynski, and R. Schultz, On the Glivenko Cantelli problem in stochastic programming: Linear recourse, Math. Oper. Res., 23 (1998), pp. 204--220.
[15]
G. Ch. Pflug and W. Römisch, Modeling, Measuring and Managing Risk, World Scientific, Singapore, 2007.
[16]
G. Ch. Pflug, Version-independence and nested distributions in multistage stochastic optimization, SIAM J. Optim., 20 (2010), pp. 1406--1420.
[17]
G. Ch. Pflug and A. Pichler, A distance for multi-stage stochastic optimization model, SIAM J. Optim., 22 (2012), pp. 1--23.
[18]
B. Sandikçi, N. Kong, and A. J. Schaefer, A hierarchy of bounds for stochastic mixed-integer programs, Math. Program. Ser. A, 138 (2012), pp. 253--272.

Cited By

View all
  • (2024)A Bayesian approach to data-driven multi-stage stochastic optimizationJournal of Global Optimization10.1007/s10898-024-01410-390:2(401-428)Online publication date: 1-Oct-2024
  • (2022)Optimal chance-constrained pension fund management through dynamic stochastic controlOR Spectrum10.1007/s00291-022-00673-044:3(967-1007)Online publication date: 1-Sep-2022
  • (2019)Sampling Scenario Set Partition Dual Bounds for Multistage Stochastic ProgramsINFORMS Journal on Computing10.1287/ijoc.2018.088532:1(145-163)Online publication date: 18-Jul-2019

Index Terms

  1. Bounds and Approximations for Multistage Stochastic Programs
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Please enable JavaScript to view thecomments powered by Disqus.

          Information & Contributors

          Information

          Published In

          cover image SIAM Journal on Optimization
          SIAM Journal on Optimization  Volume 26, Issue 1
          DOI:10.1137/sjope8.26.1
          Issue’s Table of Contents

          Publisher

          Society for Industrial and Applied Mathematics

          United States

          Publication History

          Published: 01 January 2016

          Author Tags

          1. multistage stochastic programming
          2. bounds
          3. refinement chain
          4. expected value problem

          Author Tags

          1. 90C15
          2. 90C90
          3. 65K05

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 10 Feb 2025

          Other Metrics

          Citations

          Cited By

          View all
          • (2024)A Bayesian approach to data-driven multi-stage stochastic optimizationJournal of Global Optimization10.1007/s10898-024-01410-390:2(401-428)Online publication date: 1-Oct-2024
          • (2022)Optimal chance-constrained pension fund management through dynamic stochastic controlOR Spectrum10.1007/s00291-022-00673-044:3(967-1007)Online publication date: 1-Sep-2022
          • (2019)Sampling Scenario Set Partition Dual Bounds for Multistage Stochastic ProgramsINFORMS Journal on Computing10.1287/ijoc.2018.088532:1(145-163)Online publication date: 18-Jul-2019

          View Options

          View options

          Figures

          Tables

          Media

          Share

          Share

          Share this Publication link

          Share on social media