[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Computing Rational Points in Convex Semialgebraic Sets and Sum of Squares Decompositions

Published: 01 September 2010 Publication History

Abstract

Let $\mathcal{P}=\{h_1,\dots,h_s\}\subset\mathbb{Z}[Y_1,\dots,Y_k]$, $D\geq\deg(h_i)$ for $1\leq i\leq s$, $\sigma$ bounding the bit length of the coefficients of the $h_i$'s, and let $\Phi$ be a quantifier-free $\mathcal{P}$-formula defining a convex semialgebraic set. We design an algorithm returning a rational point in $\mathcal{S}$ if and only if $\mathcal{S}\cap\mathbb{Q}\neq\emptyset$. It requires $\sigma^{\mathrm{O}(1)}D^{\mathrm{O}(k^3)}$ bit operations. If a rational point is outputted, its coordinates have bit length dominated by $\sigma D^{\mathrm{O}(k^3)}$. Using this result, we obtain a procedure for deciding whether a polynomial $f\in\mathbb{Z}[X_1,\dots,X_n]$ is a sum of squares of polynomials in $\mathbb{Q}[X_1,\dots,X_n]$. Denote by $d$ the degree of $f$, $\tau$ the maximum bit length of the coefficients in $f$, $D={n+d\choose n}$, and $k\leq D(D+1)-{n+2d\choose n}$. This procedure requires $\tau^{\mathrm{O}(1)}D^{\mathrm{O}(k^3)}$ bit operations, and the coefficients of the outputted polynomials have bit length dominated by $\tau D^{\mathrm{O}(k^3)}$.

References

[1]
S. Basu, R. Pollack, and M.-F. Roy, On the combinatorial and algebraic complexity of quantifier elimination, J. ACM, 43 (1996), pp. 1002-1045.
[2]
S. Basu, R. Pollack, and M.-F. Roy, Algorithms in Real Algebraic Geometry, 2nd ed., Algorithms Comput. Math. 10, Springer-Verlag, Berlin, 2006.
[3]
J. Bochnak, M. Coste, and M.-F. Roy, Real Algebraic Geometry, Springer-Verlag, Berlin, 1998.
[4]
M. D. Choi, T. Y. Lam, and B. Reznick, Sums of squares of real polynomials, in $K$-Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras, Proc. Sympos. Pure Math. 58, AMS, Providence, RI, 1995, pp. 103-126.
[5]
S. Heinz, Complexity of integer quasiconvex polynomial optimization, J. Complexity, 21 (2005), pp. 543-556.
[6]
C. Hillar, Sums of polynomial squares over totally real fields are rational sums of squares, Proc. Amer. Math. Soc., 137 (2009), pp. 921-930.
[7]
E. Kaltofen, B. Li, Z. Yang, and L. Zhi, Exact certification of global optimality of approximate factorizations via rationalizing sums-of-squares with floating point scalars, in Proceedings of the 13th ISSAC, Montreal, 2008, pp. 155-163.
[8]
E. Kaltofen, B. Li, Z. Yang, and L. Zhi, Exact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficients, J. Symbolic Comput., to appear.
[9]
E. L. Kaltofen, private communication, 2009.
[10]
L. Khachiyan and L. Porkolab, Computing integral points in convex semi-algebraic sets, in Proceedings of the 38th Annual IEEE Symposium on Foundations of Computer Science, Miami Beach, FL, 1997, pp. 162-171.
[11]
L. Khachiyan and L. Porkolab, Integer optimization on convex semialgebraic sets, Discrete Comput. Geom., 23 (2000), pp. 207-224.
[12]
M. Laurent, Polynomial instances of the positive semidefinite and Euclidean distance matrix completion problems, SIAM J. Matrix Anal. Appl., 22 (2000), pp. 874-894.
[13]
A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann., 261 (1982), pp. 515-534.
[14]
H. W. Lenstra Jr., Integer programming with a fixed number of variables, Math. Oper. Res., 8 (1983), pp. 538-548.
[15]
M. Mignotte, Some useful bounds, in Computer Algebra, Symbolic and Algebraic Computation, B. Buchberger, G. E. Collins, and R. Loos, eds., Springer-Verlag, Vienna, 1983, pp. 259-263.
[16]
H. Peyrl and P. A. Parrilo, A Macaulay $2$ package for computing sum of squares decompositions of polynomials with rational coefficients, in Proceedings of the 2007 International Workshop on Symbolic-Numeric Computations, London, ON, ACM Press, New York, 2007, pp. 207-208.
[17]
H. Peyrl and P. A. Parrilo, Computing sum of squares decompositions with rational coefficients, Theoret. Comput. Sci., 409 (2008), pp. 269-281.
[18]
L. Porkolab and L. Khachiyan, On the complexity of semidefinite programs, J. Global Optim., 10 (1997), pp. 351-365.
[19]
V. Powers and T. Wörmann, An algorithm for sums of squares of real polynomials, J. Pure Appl. Algebra, 6 (1998), pp. 99-104.
[20]
A. Schönhage, Factorization of univariate integer polynomials by Diophantine approximation and an improved basis reduction algorithm, in Proceedings of the ICALP, Antwerp, Belgium, 1984, pp. 436-447.
[21]
M. van Hoeij and A. Novocin, Complexity Results for Factoring Univariate Polynomials over the Rationals, 2007, available online at http://www.math.fsu.edu/$\sim$hoeij/papers/2007/paper6.pdf.

Cited By

View all
  • (2022)On exact Reznick, Hilbert-Artin and Putinar's representationsJournal of Symbolic Computation10.1016/j.jsc.2021.03.005107:C(221-250)Online publication date: 3-Jan-2022
  • (2019)Computing the Volume of Compact Semi-Algebraic SetsProceedings of the 2019 International Symposium on Symbolic and Algebraic Computation10.1145/3326229.3326262(259-266)Online publication date: 8-Jul-2019
  • (2018)Exact Algorithms for Semidefinite Programs with Degenerate Feasible SetProceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation10.1145/3208976.3209022(191-198)Online publication date: 11-Jul-2018
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image SIAM Journal on Optimization
SIAM Journal on Optimization  Volume 20, Issue 6
August 2010
822 pages

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 01 September 2010

Author Tags

  1. complexity
  2. convex
  3. rational sum of squares
  4. semidefinite programming

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 31 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2022)On exact Reznick, Hilbert-Artin and Putinar's representationsJournal of Symbolic Computation10.1016/j.jsc.2021.03.005107:C(221-250)Online publication date: 3-Jan-2022
  • (2019)Computing the Volume of Compact Semi-Algebraic SetsProceedings of the 2019 International Symposium on Symbolic and Algebraic Computation10.1145/3326229.3326262(259-266)Online publication date: 8-Jul-2019
  • (2018)Exact Algorithms for Semidefinite Programs with Degenerate Feasible SetProceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation10.1145/3208976.3209022(191-198)Online publication date: 11-Jul-2018
  • (2018)On Exact Polya and Putinar's RepresentationsProceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation10.1145/3208976.3208986(279-286)Online publication date: 11-Jul-2018
  • (2015)Optimizing a Parametric Linear Function over a Non-compact Real Algebraic VarietyProceedings of the 2015 ACM International Symposium on Symbolic and Algebraic Computation10.1145/2755996.2756666(205-212)Online publication date: 24-Jun-2015
  • (2013)Computing rational solutions of linear matrix inequalitiesProceedings of the 38th International Symposium on Symbolic and Algebraic Computation10.1145/2465506.2465949(197-204)Online publication date: 26-Jun-2013
  • (2012)Certificates of impossibility of Hilbert-Artin representations of a given degree for definite polynomials and functionsProceedings of the 37th International Symposium on Symbolic and Algebraic Computation10.1145/2442829.2442859(195-202)Online publication date: 22-Jul-2012
  • (2011)Deciding reachability of the infimum of a multivariate polynomialProceedings of the 36th international symposium on Symbolic and algebraic computation10.1145/1993886.1993910(131-138)Online publication date: 8-Jun-2011

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media