[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Deep Shading: Convolutional Neural Networks for Screen Space Shading

Published: 01 July 2017 Publication History

Abstract

In computer vision, convolutional neural networks CNNs achieve unprecedented performance for inverse problems where RGB pixel appearance is mapped to attributes such as positions, normals or reflectance. In computer graphics, screen space shading has boosted the quality of real-time rendering, converting the same kind of attributes of a virtual scene back to appearance, enabling effects like ambient occlusion, indirect light, scattering and many more. In this paper we consider the diagonal problem: synthesizing appearance from given per-pixel attributes using a CNN. The resulting Deep Shading renders screen space effects at competitive quality and speed while not being programmed by human experts but learned from example images.

References

[1]
<label>{BSD08}</label> Bavoil L., Sainz M., Dimitrov R.: Image-space horizon-based ambient occlusion. In ACM SIGGRAPH 2008 Talks2008. 6
[2]
<label>{BZM07}</label> Bosch A., Zisserman A., Munoz X.: Image classification using random forests and ferns. In Proc. ICCV2007, pp. pp.1-8. 13
[3]
<label>{CB15}</label> Christensen P.H., Burley B.: Approximate Reflectance Profiles for Efficient Subsurface Scattering. Tech. rep., 2015. 4, 8
[4]
<label>{CMK*14}</label> Cimpoi M., Maji S., Kokkinos I., Mohamed S., Vedaldi A.: Describing textures in the wild. In CVPR2014. 5
[5]
<label>{CS13}</label> Criminisi A., Shotton J.: Decision forests for computer vision and medical image analysis. Springer Science & Business Media, 2013. 13
[6]
<label>{Dac11}</label> Dachsbacher C.: Analyzing visibility configurations. IEEE Trans. Vis. and Comp. Graph. Volume 17, Issue 14 2011, pp.475-86. 2
[7]
<label>{DTSB15}</label> Dosovitskiy A., Tobias Springenberg J., Brox T.: Learning to generate chairs with convolutional neural networks. In Proc. CVPR2015, pp. pp.1538-1546. 3
[8]
<label>{EPF14}</label> Eigen D., Puhrsch C., Fergus R.: Depth map prediction from a single image using a multi-scale deep network. In Proc. NIPS2014, pp. pp.2366-74. 2
[9]
<label>{ERS13}</label> Elek O., Ritschel T., Seidel H.-P.: Real-time screen-space scattering in homogeneous environments. IEEE Computer Graph. and App., Volume 3 2013, pp.53-65. 2
[10]
<label>{FFL11}</label> Farbman Z., Fattal R., Lischinski D.: Convolution pyramids. ACM Trans. Graph. Proc. SIGGRAPH Volume 30, Issue 6 2011, pp.175:1-175:8. 2
[11]
<label>{GDDM14}</label> Girshick R., Donahue J., Darrell T., Malik J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In Proc. CVPR2014, pp. pp.580-7. 2
[12]
<label>{GEB15}</label> Gatys L.A., Ecker A.S., Bethge M.: A neural algorithm of artistic style. arXiv1508.06576 2015. 2, 9, 10
[13]
<label>{HAGM15}</label> Hariharan B., Arbeláez P., Girshick R., Malik J.: Hypercolumns for object segmentation and fine-grained localization. In Proc. CVPR2015. 3
[14]
<label>{Has86}</label> Hastad J.: Almost optimal lower bounds for small depth circuits. In ACM Theory of computing 1986, ACM, pp. pp.6-20. 13
[15]
<label>{Her03}</label> Hertzmann A.: Machine learning for computer graphics: A manifesto and tutorial. In Proc. Pacific Graphics2003. 2
[16]
<label>{JDA*11}</label> Johnson M.K., Dale K., Avidan S., Pfister H., Freeman W.T., Matusik W.: CG2Real: Improving the realism of computer generated images using a large collection of photographs. IEE Trans. Vis. and Comp. Graph. Volume 17, Issue 9 2011, pp.1273-85. 2
[17]
<label>{JSD*14}</label> Jia Y., Shelhamer E., Donahue J., Karayev S., Long J., Girshick R., Guadarrama S., Darrell T.: Caffe: Convolutional architecture for fast feature embedding. In Proc. ACM Multimedia2014, pp. pp.675-8. 5
[18]
<label>{JSG09}</label> Jimenez J., Sundstedt V., Gutierrez D.: Screen-space perceptual rendering of human skin. ACM Trans. Applied Perception Volume 6, Issue 4 2009, pp.23. 2, 8
[19]
<label>{Kaj86}</label> Kajiya J.T.: The rendering equation. In ACM SIGGRAPH 1986, vol. Volume 20, pp. pp.143-50. 2
[20]
<label>{KBS15}</label> Kalantari N.K., Bako S., Sen P.: A machine learning approach for filtering Monte Carlo noise. ACM Trans. Graph. Proc. SIGGRAPH2015. 2, 13
[21]
<label>{KSH12}</label> Krizhevsky A., Sutskever I., Hinton G.E.: Imagenet classification with deep convolutional neural networks. In Proc. NIPS2012, pp. pp.1097-105. 2
[22]
<label>{KWKT15}</label> Kulkarni T.D., Whitney W., Kohli P., Tenenbaum J.B.: Deep convolutional inverse graphics network. In Proc. NIPS2015. 3
[23]
<label>{Lot11}</label> Lottes T.: FXAA. Nvidia White Paper, 2011. 2, 8
[24]
<label>{LSD15}</label> Long J., Shelhamer E., Darrell T.: Fully convolutional networks for semantic segmentation. In Proc. CVPR2015. 3
[25]
<label>{MHBO12}</label> McGuire M., Hennessy P., Bukowski M., Osman B.: A reconstruction filter for plausible motion blur. In Proc. ACM i3D2012, pp. pp.135-42. 2, 8
[26]
<label>{MHN13}</label> Maas A.L., Hannun A.Y., Ng A.Y.: Rectifier nonlinearities improve neural network acoustic models. Proc. ICML Volume 30 2013. 5
[27]
<label>{Mit07}</label> Mittring M.: Finding next gen: Cryengine 2. In ACM SIGGRAPH 2007 Courses2007, pp. pp.97-121. 2
[28]
<label>{NAM*16}</label> Nalbach O., Arabadzhiyska E., Mehta D., Seidel H., Ritschel T.: Deep shading: Convolutional neural networks for screen-space shading. arXiv1603.060782016. 1
[29]
<label>{NKF09}</label> Nowrouzezahrai D., Kalogerakis E., Fiume E.: Shadowing dynamic scenes with arbitrary BRDFs. In Comp. Graph. Forum 2009, vol. Volume 28, pp. pp.249-58. 2
[30]
<label>{NMY15}</label> Narihira T., Maire M., Yu S.X.: Direct intrinsics: Learning albedo-shading decomposition by convolutional regression. In Proc. CVPR2015, pp. pp.2992-3. 2
[31]
<label>{OLG*07}</label> Owens J.D., Luebke D., Govindaraju N., Harris M., Krüger J., Lefohn A.E., Purcell T.J.: A survey of general-purpose computation on graphics hardware. In Comp. Graph. Forum 2007, vol. Volume 26, pp. pp.80-113. 2
[32]
<label>{Pho75}</label> Phong B.T.: Illumination for computer generated pictures. Communications of the ACM Volume 18, Issue 6 1975, pp.311-317. 4
[33]
<label>{PVG*11}</label> Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., VanderPlas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay E.: Scikit-learn: Machine learning in Python. arXiv1201.04902011. 13
[34]
<label>{RDL*15}</label> Ren P., Dong Y., Lin S., Tong X., Guo B.: Image based relighting using neural networks. ACM Trans. Graph. TOG Volume 34, Issue 4 2015, pp.111. 2, 13
[35]
<label>{RFB15}</label> Ronneberger O., Fischer P., Brox T.: U-Net: Convolutional networks for biomedical image segmentation. In Proc. MICAI. 2015, pp. pp.234-41. 3
[36]
<label>{RGS09}</label> Ritschel T., Grosch T., Seidel H.-P.: Approximating dynamic global illumination in image space. In Proc. ACM i3D2009, pp. pp.75-82. 2, 6, 8, 9
[37]
<label>{Rok93}</label> Rokita P.: Fast generation of depth of field effects in computer graphics. Computers & Graphics Volume 17, Issue 5 1993, pp.593-95. 2
[38]
<label>{RWG*13}</label> Ren P., Wang J., Gong M., Lin S., Tong X., Guo B.: Global illumination with radiance regression functions. ACM Trans. Graph. Proc. SIGGRAPH Volume 32, Issue 4 2013, pp.130. 2, 13
[39]
<label>{ST90}</label> Saito T., Takahashi T.: Comprehensible rendering of 3-d shapes. In ACM SIGGRAPH Computer Graphics 1990, vol. Volume 24, pp. pp.197-206. 2
[40]
<label>{SYM*12}</label> Scherzer D., Yang L., Mattausch O., Nehab D., Sander P.V., Wimmer M., Eisemann E.: Temporal coherence methods in real-time rendering. Comp. Graph. Forum Volume 31, Issue 8 2012, pp.2378-2408. 9
[41]
<label>{TL04}</label> Tabellion E., Lamorlette A.: An approximate global illumination system for computer generated films. ACM Trans. Graph. Proc., SIGGRAPH Volume 23, Issue 3 2004, pp.469-76. 6
[42]
<label>{WFG15}</label> Wang X., Fouhey D.F., Gupta A.: Designing deep networks for surface normal estimation. Proc. CVPR2015. 2
[43]
<label>{Zei12}</label> Zeiler M.D.: ADADELTA: an adaptive learning rate method. CoRR abs/1212.57012012. 5
[44]
<label>{ZGFK17}</label> Zhao H., Gallo O., Frosio I., Kautz J.: Loss functions for image restoration with neural networks. IEEE Transactions on Computational Imaging Volume 3, Issue 1 2017, pp.47-57. 3, 5

Cited By

View all
  • (2025)BokehMe++: Harmonious Fusion of Classical and Neural Rendering for Versatile Bokeh CreationIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2024.350173947:3(1530-1547)Online publication date: 1-Mar-2025
  • (2024)Dynamic Neural Radiosity with Multi-grid DecompositionSIGGRAPH Asia 2024 Conference Papers10.1145/3680528.3687685(1-12)Online publication date: 3-Dec-2024
  • (2024)Neural Global Illumination via Superposed Deformable Feature FieldsSIGGRAPH Asia 2024 Conference Papers10.1145/3680528.3687680(1-11)Online publication date: 3-Dec-2024
  • Show More Cited By
  1. Deep Shading: Convolutional Neural Networks for Screen Space Shading

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Computer Graphics Forum
      Computer Graphics Forum  Volume 36, Issue 4
      July 2017
      181 pages
      ISSN:0167-7055
      EISSN:1467-8659
      Issue’s Table of Contents

      Publisher

      The Eurographs Association & John Wiley & Sons, Ltd.

      Chichester, United Kingdom

      Publication History

      Published: 01 July 2017

      Author Tags

      1. źComputing methodologies ź Neural networks
      2. CCS Concepts
      3. Rasterization
      4. Rendering

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 05 Mar 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2025)BokehMe++: Harmonious Fusion of Classical and Neural Rendering for Versatile Bokeh CreationIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2024.350173947:3(1530-1547)Online publication date: 1-Mar-2025
      • (2024)Dynamic Neural Radiosity with Multi-grid DecompositionSIGGRAPH Asia 2024 Conference Papers10.1145/3680528.3687685(1-12)Online publication date: 3-Dec-2024
      • (2024)Neural Global Illumination via Superposed Deformable Feature FieldsSIGGRAPH Asia 2024 Conference Papers10.1145/3680528.3687680(1-11)Online publication date: 3-Dec-2024
      • (2024)ZeroGrads: Learning Local Surrogates for Non-Differentiable GraphicsACM Transactions on Graphics10.1145/365817343:4(1-15)Online publication date: 19-Jul-2024
      • (2024)RGB↔X: Image decomposition and synthesis using material- and lighting-aware diffusion modelsACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657445(1-11)Online publication date: 13-Jul-2024
      • (2024)Single-Video Temporal Consistency Enhancement with Rolling GuidanceComputational Visual Media10.1007/978-981-97-2092-7_6(109-130)Online publication date: 10-Apr-2024
      • (2023)Shadow Harmonization for Realistic CompositingSIGGRAPH Asia 2023 Conference Papers10.1145/3610548.3618227(1-12)Online publication date: 10-Dec-2023
      • (2023)Relighting Neural Radiance Fields with Shadow and Highlight HintsACM SIGGRAPH 2023 Conference Proceedings10.1145/3588432.3591482(1-11)Online publication date: 23-Jul-2023
      • (2023)Neural Global Illumination: Interactive Indirect Illumination Prediction Under Dynamic Area LightsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.320996329:12(5325-5341)Online publication date: 1-Dec-2023
      • (2023)Real-Time Lighting Estimation for Augmented Reality via Differentiable Screen-Space RenderingIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.314194329:4(2132-2145)Online publication date: 1-Apr-2023
      • Show More Cited By

      View Options

      View options

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media