[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

A Proof of Convergence for Two Parallel Jacobi SVD Algorithms

Published: 01 June 1989 Publication History

Abstract

The authors consider two parallel Jacobi algorithms, due to R.P. Brent et al. (J. VLSI Comput. Syst., vol.1, p.242-70, 1985) and F.T. Luk (1986 J. Lin. Alg. Applic., vol.77, p.259-73), for computing the singular value decomposition of an n*n matrix. By relating the algorithms to the cyclic-by-rows Jacobi method, they prove convergence of the former for odd n and of the latter for any n. The authors also give a nonconvergence example for the former method for all even n 4.

References

[1]
{1} R. P. Brent and F. T. Luk, "The solution of singular-value and symmetric eigenvalue problems on multiprocessor arrays," SIAM J. Sci. Statist. Comput. , vol. 6, pp. 69-84, 1985.
[2]
{2} R. P. Brent, F. T. Luk, and C. F. Van Loan, "Computation of the singular value decomposition using mesh-connected processors," J. VLSI Comput. Syst. , vol. 1, pp. 242-270, 1985.
[3]
{3} G. E. Forsythe and P. Henrici, "The cyclic Jacobi method for computing the principal values of a complex matrix," Trans. Amer. Math. Soc. , vol. 94, pp. 1-23, 1960.
[4]
{4} W. M. Gentleman, "Error analysis of QR decompositions by Givens transformations," J. Lin. Alg. Appl. , vol. 10, pp. 189-197, 1975.
[5]
{5} E. R. Hansen, "On cyclic Jacobi methods," J. SIAM , vol. 11, pp. 448-459, 1963.
[6]
{6} F. T. Luk, "A triangular processor array for computing singular values," J. Lin. Alg. Appl. , vol. 77, pp. 259-273, 1986.
[7]
{7} F. T. Luk and H. Park, "On parallel Jacobi orderings," SIAM J. Sci. Statist. Comput. , vol. 10, pp. 18-26, 1989.
[8]
{8} J. J. Modi and J. D. Pryce, "Efficient implementation of Jacobi's diagonalization method on the DAP," Numer. Math. , vol. 46, pp. 443-454, 1985.
[9]
{9} H. Park, "On the equivalence and convergence of parallel Jacobi SVD algorithms," Ph.D. dissertation, Dep. Comput. Sci., Cornell Univ., 1987.
[10]
{10} A. Sameh, "Solving the linear least squares problem on a linear array of processors," in Algorithmically Specialized Parallel Computers , L. Snyder, L. Jamieson, D. Gannon, and H. Siegel, Eds. New York: Academic, 1985, pp. 191-200.
[11]
{11} U. Schwiegelshohn and L. Thiele, "A systolic array for cyclic-by-rows Jacobi algorithms," J. Parallel Distrib. Comput. , vol. 4, pp. 334- 340, 1987.
[12]
{12} G. W. Stewart, "A Jacobi-like algorithm for computing the Schur decomposition of a non-Hermitian matrix," SIAM J. Sci. Statist. Comput. , vol. 6, pp. 853-864, 1985.
[13]
{13} J. J. Symanski, "Architecture of the systolic linear algebra parallel processor," in Real Time Signal Processing IX , W. J. Miceli, Ed., Proc. SPIE , vol. 698, 1986, pp. 17-22.
[14]
{14} R. A. Whiteside, N. S. Ostlund, and P. G. Hibbard, "A parallel Jacobi diagonalization algorithm for a loop multiple processor system," IEEE Trans. Comput. , vol. C-33, pp. 409-413, 1984.

Cited By

View all
  • (2021)On the global convergence of the block Jacobi method for the positive definite generalized eigenvalue problemCalcolo: a quarterly on numerical analysis and theory of computation10.1007/s10092-021-00415-858:2Online publication date: 1-Jun-2021
  • (2021)A Batched Jacobi SVD Algorithm on GPUs and Its Application to Quantum Lattice SystemsParallel and Distributed Computing, Applications and Technologies10.1007/978-3-030-96772-7_7(69-80)Online publication date: 17-Dec-2021
  • (2018)Asymptotic quadratic convergence of the parallel block-Jacobi EVD algorithm with dynamic ordering for Hermitian matricesBIT10.1007/s10543-018-0711-358:4(1099-1123)Online publication date: 1-Dec-2018
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image IEEE Transactions on Computers
IEEE Transactions on Computers  Volume 38, Issue 6
June 1989
170 pages
ISSN:0018-9340
Issue’s Table of Contents

Publisher

IEEE Computer Society

United States

Publication History

Published: 01 June 1989

Author Tags

  1. Jacobi SVD algorithms
  2. convergence
  3. convergence of numerical methods
  4. matrix algebra
  5. parallel Jacobi algorithms
  6. parallel algorithms.
  7. singular value decomposition

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 03 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2021)On the global convergence of the block Jacobi method for the positive definite generalized eigenvalue problemCalcolo: a quarterly on numerical analysis and theory of computation10.1007/s10092-021-00415-858:2Online publication date: 1-Jun-2021
  • (2021)A Batched Jacobi SVD Algorithm on GPUs and Its Application to Quantum Lattice SystemsParallel and Distributed Computing, Applications and Technologies10.1007/978-3-030-96772-7_7(69-80)Online publication date: 17-Dec-2021
  • (2018)Asymptotic quadratic convergence of the parallel block-Jacobi EVD algorithm with dynamic ordering for Hermitian matricesBIT10.1007/s10543-018-0711-358:4(1099-1123)Online publication date: 1-Dec-2018
  • (2017)Virtual reality navigation system for prostate biopsyProceedings of the 23rd ACM Symposium on Virtual Reality Software and Technology10.1145/3139131.3139162(1-4)Online publication date: 8-Nov-2017
  • (2016)FPGA, GPU, and CPU implementations of Jacobi algorithm for eigenanalysisJournal of Parallel and Distributed Computing10.1016/j.jpdc.2016.05.01496:C(172-180)Online publication date: 1-Oct-2016
  • (2015)Convergence to diagonal form of block Jacobi-type methodsNumerische Mathematik10.1007/s00211-014-0647-8129:3(449-481)Online publication date: 1-Mar-2015
  • (2012)Novel modifications of parallel Jacobi algorithmsNumerical Algorithms10.1007/s11075-011-9473-659:1(1-27)Online publication date: 1-Jan-2012
  • (1993)A real algorithm for the Hermitian eigenvalue decompositionBIT10.1007/BF0199035133:1(158-171)Online publication date: 1-Mar-1993
  • (1991)On the Generalized Schur Decomposition of a Matrix Pencil for Parallel ComputationSIAM Journal on Scientific and Statistical Computing10.5555/3037621.303762212:4(911-939)Online publication date: 1-Jul-1991
  • (1991)An algorithm for the generalized singular value decomposition on massively parallel computersProceedings of the 5th international conference on Supercomputing10.1145/109025.109065(136-145)Online publication date: 1-Jun-1991
  • Show More Cited By

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media