[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1109/VISUAL.2003.1250365guideproceedingsArticle/Chapter ViewAbstractPublication PagesvisConference Proceedingsconference-collections
Article
Free access

A Multi-resolution Data Structure for Two-dimensional Morse-Smale Functions

Published: 22 October 2003 Publication History

Abstract

We combine topological and geometric methods to construct a multi-resolution data structure for functions over two-dimensional domains. Starting with the Morse-Smale complex, we construct a topological hierarchy by progressively canceling critical points in pairs. Concurrently, we create a geometric hierarchy by adapting the geometry to the changes in topology. The data structure supports mesh traversal operations similarly to traditional multi-resolution representations.

References

[1]
ALEXANDROV, P. S. 1998. Combinatorial Topology. Dover, New York.
[2]
BAJAJ, C. L., AND SCHIKORE, D. R. 1998. Topology preserving data simplifi cation with error bounds. Computers and Graphics 22, 1, 3-12.
[3]
CARLSON, R., AND FRITSCH, F. N. 1985. Monotone piecewise bicubic interpolation. Journal on Numerical Analysis 22 (Apr.), 386-400.
[4]
CAYLEY, A. 1859. On contour and slope lines. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science XVIII, 264-268.
[5]
CIGNONI, P., ROCCHINI, C., AND SCOPIGNO, R. 1998. Metro: Measuring error on simplifi ed surfaces. Computer Graphics Forum 17(2) (June), 167-174.
[6]
ECHEKKI, T., AND CHEN, J. H. 2003. Direct numerical simulation of autoignition in non-homogeneous hydrogen-air mixtures. Combust. Flame. to appear.
[7]
EDELSBRUNNER, H., AND MÜCKE, E. P. 1990. Simulation of simplicity: A technique to cope with degenerate cases in geometric algorithms. ACM Trans. Computer Graphics 9, 66-104.
[8]
EDELSBRUNNER, H., HARER, J., AND ZOMORODIAN, A. 2001. Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds. In Symp. on Computational Geometry, ACM Press, New York, NY, USA, ACM, 70-79.
[9]
EDELSBRUNNER, H., LETSCHER, D., AND ZOMORODIAN, A. 2002. Topological persistence and simplification. Discrete Comput. Geom. 28, 511-533.
[10]
EDELSBRUNNER, H., HARER, J., NATARAJAN, V., AND PASCUCCI, V. 2003. Morse-Smale complexes for piecewise linear 3-manifolds. In Proc. 19th Sympos. Comput. Geom., 361-370.
[11]
EL-SANA, J., AND VARSHNEY, A. 1998. Topology simplification for polygonal virtual environments. IEEE Transactions on Visualization and Computer Graphics 4, 2, 133-144.
[12]
FLOATER, M. S. 2003. Mean value coordinates. Computer Aided Geometric Design 20, 19-27.
[13]
FOMENKO, A. T., AND KUNII, T. L., Eds. 1997. Topological Modeling for Visualization. Springer-Verlag.
[14]
GARLAND, M., AND HECKBERT, P. S. 1997. Surface simplification using quadric error metrics. In Proceedings of ACM SIGGRPAH 1997, ACM Press / ACM SIGGRAPH, New York, NY, USA, T. Whitted, Ed., vol. 31, ACM, 209-216.
[15]
GERSTNER, T., AND PAJAROLA, R. 2000. Topology preserving and controlled topology simplifying multiresolution isosurface extraction. In Proc. IEEE Visualization 2000, IEEE Computer Society Press, Los Alamitos California, T. Ertl, B. Hamann, and A. Varshney, Eds., IEEE, 259-266.
[16]
GREINER, H. 1991. A survey on univariate data interpolation and approximation by splines of given shape. Math. Comput. Model. 15, 97-106.
[17]
GUSKOV, I., AND WOOD, Z. 2001. Topological noise removal. In Proceedings of Graphics Interface 2001, B. Watson and J. W. Buchanan, Eds., 19-26.
[18]
HE, T., HONG, L., VARSHNEY, A., AND WANG, S. W. 1996. Controlled topology simplification. IEEE Trans. on Visualization and Computer Graphics 2, 2, 171-184.
[19]
HOPPE, H. 1996. Progressive meshes. Computer Graphics (Proc. SIGGRAPH '96) 30, 4 (Aug.), 99-108.
[20]
HORMANN, K., 1971. Morphometrie der Erdoberfläche, Schrift. d. Univ. Kiel.
[21]
JU, T., LOSASSO, F., SCHAEFER, S., AND WARREN, J. 2002. Dual contouring of hermite data. ACM Trans. on Graphics (Proc. SIGGRAPH '02) 21, 3, 339-346.
[22]
LINDSTROM, P., AND TURK, G. 1998. Fast and memory efficient polygonal simplification. In Proc. IEEE Visualization '98, IEEE Computer Society Press, Los Alamitos California, IEEE, 279-286.
[23]
LINSTROM, P., AND PASCUCCI, V. 2002. Terrain simplification simplified: A general framework for view-dependent out-of-core visualization. IEEE Transactions on Visualization and Computer Graphics 8, 3 (July-September), 239-254.
[24]
MARK, D. M. 1977. Topological properties of geographic surfaces. In Proc. Advanced Study Symposium on Topological Data Structures.
[25]
MATSUMOTO, Y. 2002. An Introduction to Morse Theory. American Mathematical Society.
[26]
MAXWELL, J. C. 1870. On hills and dales. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science XL, 421-427.
[27]
MILNOR, J. 1963. Morse Theory. Princeton University Press, New Jersey.
[28]
MORSE, M. 1925. Relations between the critical points of a real functions of n independent variables. Transactions of the American Mathematical Society 27 (July), 345-396.
[29]
MUNKRES, J. R. 1984. Elements of Algebraic Topology. Addison-Wesley, Redwood City, CA.
[30]
PFALTZ, J. 1976. Surface networks. Geographical Analysis 8, 77-93.
[31]
PFALTZ, J. 1979. A graph grammar that describes the set of two-dimensional surface networks. Graph-Grammars and Their Application to Computer Science and Biology (Lecture Notes in Computer Science no. 73.
[32]
POPOVIC, J., AND HOPPE, H. 1997. Progressive simplicial complexes. In Proceedings of ACM SIGGRPAH 1997, ACM Press / ACM SIGGRAPH, New York, NY, USA, T. Whitted, Ed., vol. 31, ACM, 209-216.
[33]
TAUBIN, G. 1995. A signal processing approach to fair surface design. Computer Graphics (Proc. SIGGRAPH' 95), 351-358.

Cited By

View all
  • (2024)Localized Evaluation for Constructing Discrete Vector FieldsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.345635531:1(86-96)Online publication date: 9-Sep-2024
  • (2024)Exploring Classification of Topological Priors With Machine Learning for Feature ExtractionIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.324863230:7(3959-3972)Online publication date: 1-Jul-2024
  • (2011)Dimension-independent simplification and refinement of Morse complexesGraphical Models10.1016/j.gmod.2011.05.00173:5(261-285)Online publication date: 1-Sep-2011
  • Show More Cited By
  1. A Multi-resolution Data Structure for Two-dimensional Morse-Smale Functions

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Guide Proceedings
      VIS '03: Proceedings of the 14th IEEE Visualization 2003 (VIS'03)
      October 2003
      664 pages
      ISBN:0769520308

      Publisher

      IEEE Computer Society

      United States

      Publication History

      Published: 22 October 2003

      Author Tags

      1. Critical point theory
      2. Morse-Smale complexes
      3. multi-resolution data structure
      4. simplification
      5. terrains

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)28
      • Downloads (Last 6 weeks)5
      Reflects downloads up to 13 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Localized Evaluation for Constructing Discrete Vector FieldsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.345635531:1(86-96)Online publication date: 9-Sep-2024
      • (2024)Exploring Classification of Topological Priors With Machine Learning for Feature ExtractionIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.324863230:7(3959-3972)Online publication date: 1-Jul-2024
      • (2011)Dimension-independent simplification and refinement of Morse complexesGraphical Models10.1016/j.gmod.2011.05.00173:5(261-285)Online publication date: 1-Sep-2011
      • (2011)Quading triangular meshes with certain topological constraintsJournal of Computational and Applied Mathematics10.1016/j.cam.2011.05.009236:5(916-923)Online publication date: 1-Oct-2011
      • (2010)Lipschitz unimodal and isotonic regression on paths and treesProceedings of the 9th Latin American conference on Theoretical Informatics10.1007/978-3-642-12200-2_34(384-396)Online publication date: 19-Apr-2010
      • (2008)Describing shapes by geometrical-topological properties of real functionsACM Computing Surveys10.1145/1391729.139173140:4(1-87)Online publication date: 15-Oct-2008
      • (2005)Morse-Smale decompositions for modeling terrain knowledgeProceedings of the 2005 international conference on Spatial Information Theory10.1007/11556114_27(426-444)Online publication date: 14-Sep-2005
      • (2004)Fair morse functions for extracting the topological structure of a surface meshACM SIGGRAPH 2004 Papers10.1145/1186562.1015769(613-622)Online publication date: 8-Aug-2004
      • (2004)Fair morse functions for extracting the topological structure of a surface meshACM Transactions on Graphics10.1145/1015706.101576923:3(613-622)Online publication date: 1-Aug-2004
      • (2004)Simplifying Flexible Isosurfaces Using Local Geometric MeasuresProceedings of the conference on Visualization '0410.1109/VISUAL.2004.96(497-504)Online publication date: 10-Oct-2004
      • Show More Cited By

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media