[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Fairness Enhancement of UAV Systems With Hybrid Active-Passive RIS

Published: 28 September 2023 Publication History

Abstract

We consider unmanned aerial vehicle (UAV)-enabled wireless systems where downlink communications between a multi-antenna UAV and multiple users are assisted by a hybrid active-passive reconfigurable intelligent surface (RIS). We aim at a fairness design of two typical UAV-enabled networks, namely the static-UAV network where the UAV is deployed at a fixed location to serve all users at the same time, and the mobile-UAV network which employs the time division multiple access protocol. In both networks, our goal is to maximize the minimum rate among users through jointly optimizing the UAV’s location/trajectory, transmit beamformer, and RIS coefficients. The resulting problems are highly nonconvex due to a strong coupling between the involved variables. We develop efficient algorithms based on block coordinate ascend and successive convex approximation to effectively solve these problems in an iterative manner. In particular, in the optimization of the mobile-UAV network, closed-form solutions to the transmit beamformer and RIS passive coefficients are derived. Numerical results show that a hybrid RIS equipped with only 4 active elements and a power budget of 0 dBm offers an improvement of 38%–63% in minimum rate, while that achieved by a passive RIS is only about 15%, with the same total number of elements.

References

[1]
Q. Wu, Y. Zeng, and R. Zhang, “Joint trajectory and communication design for multi-UAV enabled wireless networks,” IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 2109–2121, Mar. 2018.
[2]
X. Caoet al., “Reconfigurable intelligent surface-assisted aerial-terrestrial communications via multi-task learning,” IEEE J. Sel. Areas Commun., vol. 39, no. 10, pp. 3035–3050, Oct. 2021.
[3]
Y. Yang, B. Zheng, S. Zhang, and R. Zhang, “Intelligent reflecting surface meets OFDM: Protocol design and rate maximization,” IEEE Trans. Commun., vol. 68, no. 7, pp. 4522–4535, Jul. 2020.
[4]
Q. Wu and R. Zhang, “Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts,” IEEE Trans. Commun., vol. 68, no. 3, pp. 1838–1851, Mar. 2020.
[5]
C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen, “Reconfigurable intelligent surfaces for energy efficiency in wireless communication,” IEEE Trans. Wireless Commun., vol. 18, no. 8, pp. 4157–4170, Aug. 2019.
[6]
M. Munochiveyi, A. C. Pogaku, D.-T. Do, A.-T. Le, M. Voznak, and N. D. Nguyen, “Reconfigurable intelligent surface aided multi-user communications: State-of-the-art techniques and open issues,” IEEE Access, vol. 9, pp. 118584–118605, 2021.
[7]
A. C. Pogaku, D.-T. Do, B. M. Lee, and N. D. Nguyen, “UAV-assisted RIS for future wireless communications: A survey on optimization and performance analysis,” IEEE Access, vol. 10, pp. 16320–16336, 2022.
[8]
D. Tyrovolas, S. A. Tegos, P. D. Diamantoulakis, and G. K. Karagiannidis, “Performance analysis of synergetic UAV-RIS communication networks,” 2021, arXiv:2106.10034.
[9]
C. Huanget al., “Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends,” IEEE Wireless Commun., vol. 27, no. 5, pp. 118–125, Oct. 2020.
[10]
Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming,” IEEE Trans. Wireless Commun., vol. 18, no. 11, pp. 5394–5409, Nov. 2019.
[11]
N. T. Nguyen, Q.-D. Vu, K. Lee, and M. Juntti, “Hybrid relay-reflecting intelligent surface-assisted wireless communications,” IEEE Trans. Veh. Technol., vol. 71, no. 6, pp. 6228–6244, Jun. 2022.
[12]
S. Li, B. Duo, X. Yuan, Y.-C. Liang, and M. Di Renzo, “Reconfigurable intelligent surface assisted UAV communication: Joint trajectory design and passive beamforming,” IEEE Wireless Commun. Lett., vol. 9, no. 5, pp. 716–720, May 2020.
[13]
S. Li, B. Duo, M. D. Renzo, M. Tao, and X. Yuan, “Robust secure UAV communications with the aid of reconfigurable intelligent surfaces,” IEEE Trans. Wireless Commun., vol. 20, no. 10, pp. 6402–6417, Oct. 2021.
[14]
J. Li and J. Liu, “Sum rate maximization via reconfigurable intelligent surface in UAV communication: Phase shift and trajectory optimization,” in Proc. Int. Conf. Commun. Netw., China, 2020, pp. 124–129.
[15]
L. Jiang and H. Jafarkhani, “Reconfigurable intelligent surface assisted mmWave UAV wireless cellular networks,” in Proc. IEEE Int. Conf. Commun., Jun. 2021, pp. 1–6.
[16]
X. Guo, Y. Chen, and Y. Wang, “Learning-based robust and secure transmission for reconfigurable intelligent surface aided millimeter wave UAV communications,” IEEE Wireless Commun. Lett., vol. 10, no. 8, pp. 1795–1799, Aug. 2021.
[17]
M. Diamanti, M. Tsampazi, E. E. Tsiropoulou, and S. Papavassiliou, “Energy efficient multi-user communications aided by reconfigurable intelligent surfaces and UAVs,” in Proc. IEEE Int. Conf. Smart Comput. (SMARTCOMP), Aug. 2021, pp. 371–376.
[18]
Y. Pan, K. Wang, C. Pan, H. Zhu, and J. Wang, “UAV-assisted and intelligent reflecting surfaces-supported terahertz communications,” IEEE Wireless Commun. Lett., vol. 10, no. 6, pp. 1256–1260, Jun. 2021.
[19]
K. K. Nguyen, S. R. Khosravirad, D. B. da Costa, L. D. Nguyen, and T. Q. Duong, “Reconfigurable intelligent surface-assisted multi-UAV networks: Efficient resource allocation with deep reinforcement learning,” IEEE J. Sel. Topics Signal Process., vol. 16, no. 3, pp. 358–368, Apr. 2021.
[20]
D. Wanget al., “Passive beamforming and trajectory optimization for reconfigurable intelligent surface-assisted UAV secure communication,” Remote Sens., vol. 13, no. 21, p. 4286, Oct. 2021.
[21]
J. Li, S. Xu, J. Liu, Y. Cao, and W. Gao, “Reconfigurable intelligent surface enhanced secure aerial-ground communication,” IEEE Trans. Commun., vol. 69, no. 9, pp. 6185–6197, Sep. 2021.
[22]
X. Liu, Y. Liu, and Y. Chen, “Machine learning empowered trajectory and passive beamforming design in UAV-RIS wireless networks,” IEEE J. Sel. Areas Commun., vol. 39, no. 7, pp. 2042–2055, Jul. 2021.
[23]
X. Mu, Y. Liu, L. Guo, J. Lin, and H. V. Poor, “Intelligent reflecting surface enhanced multi-UAV NOMA networks,” IEEE J. Sel. Areas Commun., vol. 39, no. 10, pp. 3051–3066, Oct. 2021.
[24]
A. Ranjha and G. Kaddoum, “URLLC facilitated by mobile UAV relay and RIS: A joint design of passive beamforming, blocklength, and UAV positioning,” IEEE Internet Things J., vol. 8, no. 6, pp. 4618–4627, Mar. 2021.
[25]
C. Jeong and S. H. Chae, “Simultaneous wireless information and power transfer for multiuser UAV-enabled IoT networks,” IEEE Internet Things J., vol. 8, no. 10, pp. 8044–8055, May 2021.
[26]
M. Diamanti, P. Charatsaris, E. E. Tsiropoulou, and S. Papavassiliou, “The prospect of reconfigurable intelligent surfaces in integrated access and backhaul networks,” IEEE Trans. Green Commun. Netw., vol. 6, no. 2, pp. 859–872, Jun. 2022.
[27]
M. Samir, M. Elhattab, C. Assi, S. Sharafeddine, and A. Ghrayeb, “Optimizing age of information through aerial reconfigurable intelligent surfaces: A deep reinforcement learning approach,” IEEE Trans. Veh. Technol., vol. 70, no. 4, pp. 3978–3983, Apr. 2021.
[28]
K. Yang, Y. Shi, Y. Zhou, Z. Yang, L. Fu, and W. Chen, “Federated machine learning for intelligent IoT via reconfigurable intelligent surface,” IEEE Netw., vol. 34, no. 5, pp. 16–22, Sep. 2020.
[29]
C. Huang, R. Mo, and C. Yuen, “Reconfigurable intelligent surface assisted multiuser MISO systems exploiting deep reinforcement learning,” IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1839–1850, Aug. 2020.
[30]
C. Huanget al., “Multi-hop RIS-empowered terahertz communications: A DRL-based hybrid beamforming design,” IEEE J. Sel. Areas Commun., vol. 39, no. 6, pp. 1663–1677, Jun. 2021.
[31]
A. Taha, M. Alrabeiah, and A. Alkhateeb, “Deep learning for large intelligent surfaces in millimeter wave and massive MIMO systems,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2019, pp. 1–6.
[32]
G. C. Alexandropoulos and E. Vlachos, “A hardware architecture for reconfigurable intelligent surfaces with minimal active elements for explicit channel estimation,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2020, pp. 9175–9179.
[33]
N. T. Nguyen, Q.-D. Vu, K. Lee, and M. Juntti, “Spectral efficiency optimization for hybrid relay-reflecting intelligent surface,” in Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), Jun. 2021, pp. 1–6.
[34]
N. T. Nguyen, V. Nguyen, H. V. Nguyen, H. Q. Ngo, S. Chatzinotas, and M. Juntti, “Downlink throughput of cell-free massive MIMO systems assisted by hybrid relay-reflecting intelligent surfaces,” in Proc. IEEE Int. Conf. Commun., May 2022, pp. 1475–1480.
[35]
N. T. Nguyen, V.-D. Nguyen, H. V. Nguyen, H. Q. Ngo, S. Chatzinotas, and M. Juntti, “Spectral efficiency analysis of hybrid relay-reflecting intelligent surface-assisted cell-free massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 22, no. 5, pp. 3397–3416, May 2022.
[36]
N. Thanh Nguyenet al., “Hybrid relay-reflecting intelligent surface-aided wireless communications: Opportunities, challenges, and future perspectives,” 2021, arXiv:2104.02039.
[37]
A. Shojaeifardet al., “MIMO evolution beyond 5G through reconfigurable intelligent surfaces and fluid antenna systems,” Proc. IEEE, vol. 110, no. 9, pp. 1244–1265, Sep. 2022.
[38]
N. T. Nguyen, V.-D. Nguyen, Q. Wu, A. Tölli, S. Chatzinotas, and M. Juntti, “Hybrid active-passive reconfigurable intelligent surface-assisted multi-user MISO systems,” in Proc. IEEE Works. Sign. Proc. Adv. Wireless Comms., Jul. 2022, pp. 1–5.
[39]
N. T. Nguyen, V. Nguyen, Q. Wu, A. Tölli, S. Chatzinotas, and M. Juntti, “Hybrid active-passive reconfigurable intelligent surface-assisted UAV communications,” in Proc. IEEE Global Commun. Conf., Dec. 2022, pp. 3126–3131.
[40]
K.-H. Ngo, N. T. Nguyen, T. Q. Dinh, T.-M. Hoang, and M. Juntti, “Low-latency and secure computation offloading assisted by hybrid relay-reflecting intelligent surface,” in Proc. Int. Conf. Adv. Technol. Commun. (ATC), Oct. 2021, pp. 306–311.
[41]
E. N. Egashira, D. P. M. Osorio, N. T. Nguyen, and M. Juntti, “Secrecy capacity maximization for a hybrid relay-RIS scheme in mmWave MIMO networks,” in Proc. IEEE 95th Veh. Technol. Conf., (VTC-Spring), Jun. 2022, pp. 1–6.
[42]
S. Ahmed, A. E. Kamal, and M. Y. Selim, “Adding active elements to reconfigurable intelligent surfaces to enhance energy harvesting for IoT devices,” in Proc. IEEE Mil. Commun. Conf. (MILCOM), Nov. 2021, pp. 297–302.
[43]
Z. Yigit, E. Basar, M. Wen, and I. Altunbas, “Hybrid reflection modulation,” IEEE Trans. Wireless Commun., vol. 22, no. 6, pp. 4106–4116, Nov. 2022.
[44]
R. Schroeder, J. He, and M. Juntti, “Passive RIS vs. hybrid RIS: A comparative study on channel estimation,” in Proc. IEEE Veh. Technol. Conf., Jun. 2021, pp. 1–7.
[45]
R. Long, Y.-C. Liang, Y. Pei, and E. G. Larsson, “Active reconfigurable intelligent surface-aided wireless communications,” IEEE Trans. Wireless Commun., vol. 20, no. 8, pp. 4962–4975, Aug. 2021.
[46]
M. H. Khoshafa, T. M. N. Ngatched, M. H. Ahmed, and A. R. Ndjiongue, “Active reconfigurable intelligent surfaces-aided wireless communication system,” IEEE Commun. Lett., vol. 25, no. 11, pp. 3699–3703, Nov. 2021.
[47]
Q. Wu and R. Zhang, “Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network,” IEEE Commun. Mag., vol. 58, no. 1, pp. 106–112, Jan. 2020.
[48]
S. Zhang and R. Zhang, “Capacity characterization for intelligent reflecting surface aided MIMO communication,” IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1823–1838, Aug. 2020.
[49]
N. Landsberg and E. Socher, “A low-power 28-nm CMOS FD-SOI reflection amplifier for an active F-band reflectarray,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 10, pp. 3910–3921, Oct. 2017.
[50]
Q. Wu, J. Xu, and R. Zhang, “Capacity characterization of UAV-enabled two-user broadcast channel,” IEEE J. Sel. Areas Commun., vol. 36, no. 9, pp. 1955–1971, Sep. 2018.
[51]
D. Bharadia and S. Katti, “Full duplex MIMO radios,” in Proc. 11th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2014, pp. 359–372.
[52]
R. Malik and M. Vu, “Optimal transmission using a self-sustained relay in a full-duplex MIMO system,” IEEE J. Sel. Areas Commun., vol. 37, no. 2, pp. 374–390, Feb. 2018.
[53]
K.-G. Nguyen, Q.-D. Vu, L.-N. Tran, and M. Juntti, “Energy efficiency fairness for multi-pair wireless-powered relaying systems,” IEEE J. Sel. Areas Commun., vol. 37, no. 2, pp. 357–373, Feb. 2018.
[54]
A. Beck, A. Ben-Tal, and L. Tetruashvili, “A sequential parametric convex approximation method with applications to nonconvex truss topology design problems,” J. Global Optim., vol. 47, no. 1, pp. 29–51, May 2010.
[55]
L. Ge, P. Dong, H. Zhang, J.-B. Wang, and X. You, “Joint beamforming and trajectory optimization for intelligent reflecting surfaces-assisted UAV communications,” IEEE Access, vol. 8, pp. 78702–78712, 2020.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image IEEE Transactions on Wireless Communications
IEEE Transactions on Wireless Communications  Volume 23, Issue 5
May 2024
1396 pages

Publisher

IEEE Press

Publication History

Published: 28 September 2023

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Dec 2024

Other Metrics

Citations

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media