[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

A Practical Solver for Scalar Data Topological Simplification

Published: 10 September 2024 Publication History

Abstract

This paper presents a practical approach for the optimization of topological simplification, a central pre-processing step for the analysis and visualization of scalar data. Given an input scalar field $f$ and a set of “signal” persistence pairs to maintain, our approaches produces an output field $g$ that is close to $f$ and which optimizes (i) the cancellation of “non-signal” pairs, while (ii) preserving the “signal” pairs. In contrast to pre-existing simplification algorithms, our approach is not restricted to persistence pairs involving extrema and can thus address a larger class of topological features, in particular saddle pairs in three-dimensional scalar data. Our approach leverages recent generic persistence optimization frameworks and extends them with tailored accelerations specific to the problem of topological simplification. Extensive experiments report substantial accelerations over these frameworks, thereby making topological simplification optimization practical for real-life datasets. Our approach enables a direct visualization and analysis of the topologically simplified data, e.g., via isosurfaces of simplified topology (fewer components and handles). We apply our approach to the extraction of prominent filament structures in three-dimensional data. Specifically, we show that our pre-simplification of the data leads to practical improvements over standard topological techniques for removing filament loops. We also show how our approach can be used to repair genus defects in surface processing. Finally, we provide a C++ implementation for reproducibility purposes.

References

[1]
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org. 6.
[2]
P. K. Agarwal, L. Arge, and K. Yi. I/O-efficient batched union-find and its applications to terrain analysis. In SoCG, pp. 167–176. ACM, New York, 2006. 1, 2.
[3]
K. Anderson, J. Anderson, S. Palande, and B. Wang. Topological data analysis of functional MRI connectivity in time and space domains. In MICCAI Workshop on Connectomics in NeuroImaging, pp. 67–77. Springer, Cham, 2018. 1.
[4]
D. Attali, U. Bauer, O. Devillers, M. Glisse, and A. Lieutier. Homological reconstruction and simplification in R3. In SoCG, pp. 117–126. ACM, New York, 2013. 2,4, 8, 9.
[5]
D. Attali, M. Glisse, F. Lazarus, and D. Morozov. Persistence-Sensitive Simplification of Functions on Surfaces in Linear Time. In TopoInVis, 2009. 1,2.
[6]
T. F. Banchoff. Critical points and curvature for embedded polyhedral surfaces. The American Mathematical Monthly, 45(1):245–256, 1967. 1.
[7]
S. Barannikov. Framed Morse complexes and its invariants. Adv. Soviet Math., 21:93–116, 1994. 3.
[8]
U. Bauer, M. Kerber, and J. Reininghaus. Distributed computation of persistent homology. In Algorithm Engin. and Exp., pp. 31–38. SIAM, Philadelphia, 2014., 5.
[9]
U. Bauer, M. Kerber, J. Reininghaus, and H. Wagner. Phat - persistent homology algorithms toolbox. J. Symb. Comput., 78:76–90, 2017. 5.
[10]
U. Bauer, C. Lange, and M. Wardetzky. Optimal Topological Simplification of Discrete Functions on Surfaces. Discrete Computational Geometry, 47(2):347–377, 2012. 1,2.
[11]
D. P. Bertsekas and D. Castañon. Parallel synchronous and asynchronous implementations of the auction algorithm. Parallel Computing, 17(6–7):707–732, 1991. 5,6.
[12]
H. Bhatia, A. G. Gyulassy, V. Lordi, J. E. Pask, V. Pascucci, and P.-T. Bremer. Topoms: Comprehensive topological exploration for molecular and condensed-matter systems. J. of Computational Chemistry, 39(16):936–952, 2018. 1.
[13]
S. Biasotti, D. Giorgio, M. Spagnuolo, and B. Falcidieno. Reeb graphs for shape analysis and applications. TCS, 392(1–3):5–22, 2008. 1.
[14]
T. Bin Masood, J. Budin, M. Falk, G. Favelier, C. Garth, C. Gueunet, P. Guillou, L. Hofmann, P. Hristov, A. Kamakshidasan, C. Kappe, P. Klacansky, P. Laurin, J. Levine, J. Lukasczyk, D. Sakurai, M. Soler, P. Steneteg, J. Tierny, W. Usher, J. Vidal, and M. Wozniak. An Overview of the Topology ToolKit. In TopoInVis, pp. 327–342. Springer, Cham, 2019. 1,6.
[15]
A. Bock, H. Doraiswamy, A. Summers, and C. T. Silva. TopoAngler: Interactive Topology-Based Extraction of Fishes. IEEE TVCG, 24(1):812–821, 2018. 1.
[16]
P. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. A topological hierarchy for functions on triangulated surfaces. IEEE TVCG, 10(4):385–396, 2004. 2.
[17]
P. Bremer, G. Weber, J. Tierny, V. Pascucci, M. Day, and J. Bell. Interactive exploration and analysis of large scale simulations using topology-based data segmentation. IEEE TVCG, 17(9):1307–1324, 2011. 1.
[18]
H. Carr. Topological Manipulation of Isosurfaces. PhD thesis, University of British Columbia, 2004. 2.
[19]
H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimensions. In Symp. on Dis. Alg., 9 pages, pp. 918–926. SIAM, Philadelphia, 2000. 1.
[20]
H. Carr, G. Weber, C. Sewell, and J. Ahrens. Parallel peak pruning for scalable SMP contour tree computation. In IEEE LDAV, pp. 75–84. IEEE, Baltimore, 2016. 1.
[21]
H. A. Carr, J. Snoeyink, and M. Van de Panne. Simplifying FlexibleIsosurfaces Using Local Geometric Measures. In VIS, pp. 497–504. IEEE, Austin, 2004. 1, 4.
[22]
M. Carrière, F. Chazal, M. Glisse, Y. Ike, H. Kannan, and Y. Umeda. Optimizing persistent homology based functions. In ICML, pp. 1294–1303. PMLR, 2021. 2,4,5,6.
[23]
M. Carrière, M. Cuturi, and S. Oudot. Sliced wasserstein kernel for persistence diagrams. In ICML, 10 pages, pp. 664–673. JMLR.org, 2017. 5.
[24]
E. W. Chambers, T. Ju, D. Letscher, M. Li, C. N. Topp, and Y. Yan. Some heuristics for the homological simplification problem. pp. 353–359. CCCG, Ontario, 2018. 2,8.
[25]
D. Cohen-Steiner, H. Edelsbrunner, and D. Morozov. Vines and vineyards by updating persistence in linear time. In SoCG, 8 pages, pp. 119–126. ACM, New York, 2006. 6.
[26]
D. Davis, D. Drusvyatskiy, S. M. Kakade, and J. D. Lee. Stochastic Subgradient Method Converges on Tame Functions. FoCM, 20(1): 119–154, 2020. 2,4.
[27]
H. Edelsbrunner and J. Harer. Computational Topology: An Introduction. AMS, 2009. 1,2,3.
[28]
H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological Persistence and Simplification. Discrete Computational Geometry, 28(4):511–533, 2002. 1,3,4,6.
[29]
H. Edelsbrunner, D. Morozov, and V. Pascucci. Persistence-sensitive simplification functions on 2-manifolds. In SoCG, pp. 127–134. ACM, New York, 2006. 1, 2.
[30]
H. Edelsbrunner and E. P. Mucke. Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms. ACM Trans. on Graphics, 9(1):66–104, 1990. 3.
[31]
R. Forman. A User's Guide to Discrete Morse Theory. AM, 48:B48c–35, 1998. 2,6,7.
[32]
P. Frosini and C. Landi. Size theory as a topological tool for computer vision. Pattern Recognition and Image Analysis, 9(4):596–603, 1999. 3.
[33]
R. B. Gabrielsson, V. Ganapathi-Subramanian, P. Skraba, and L. J. Guibas. Topology-Aware Surface Reconstruction for Point Clouds. CGF, 39(5):197–207, 2020. 2.
[34]
Y. I. Gingold and D. Zorin. Controlled-topology filtering. Comput. Aided Des., 39(8):676–684, 2007. 2.
[35]
C. Gueunet, P. Fortin, J. Jomier, and J. Tierny. Task-based augmented merge trees with fibonacci heaps. In IEEE LDAV, pp. 6–15. Los Alamitos, 2017. 1.
[36]
C. Gueunet, P. Fortin, J. Jomier, and J. Tierny. Task-Based Augmented Contour Trees with Fibonacci Heaps. IEEE TPDS, 30(8):1889–1905, 2019. 1.
[37]
C. Gueunet, P. Fortin, J. Jomier, and J. Tierny. Task-based Augmented Reeb Graphs with Dynamic ST-Trees. In EGPGV, pp. 27–37. EG, Eind-hoven, 2019. 1.
[38]
P. Guillou, J. Vidal, and J. Tierny. Discrete Morse Sandwich: Fast Computation of Persistence Diagrams for Scalar Data - An Algorithm and A Benchmark. IEEE TVCG, 30(4):1897–1915, 2023. 1,3,5,6,7,9.
[39]
D. Günther, A. Jacobson, J. Reininghaus, H. Seidel, O. Sorkine-Hornung, and T. Weinkauf. Fast and Memory-Efficienty Topological Denoising of 2D and 3D Scalar Fields. IEEE TVCG, 20(12):2585–2594, 2014. 2.
[40]
D. Günther, J. Reininghaus, H. Seidel, and T. Weinkauf. Notes on the simplification of the morse-smale complex. In TopoInVis, pp. 135–150. Springer, Berlin, 2013. 2,7,8,9.
[41]
A. Gyulassy. Combinatorial construction of Morse-Smale complexes for data analysis and visualization. PhD thesis, UC Davis, 2008. 1, 2.
[42]
A. Gyulassy, P. Bremer, R. Grout, H. Kolla, J. Chen, and V. Pascucci. Stability of dissipation elements: A case study in combustion. CGF, 33(3):51–60, 2014. 1.
[43]
A. Gyulassy, P. Bremer, B. Hamann, and V. Pascucci. Practical considerations in morse-smale complex computation. In TopoInVis, pp. 67–78. Springer, Berlin, 2009. 2,9.
[44]
A. Gyulassy, P. Bremer, and V. Pascucci. Shared-Memory Parallel Computation of Morse-Smale Complexes with Improved Accuracy. IEEE TVCG, 25(1):1183–1192, 2019. 1.
[45]
A. Gyulassy, P. T. Bremer, B. Hamann, and V. Pascucci. A practical approach to Morse-Smale complex computation: Scalability and generality. IEEE TVCG, 14(6):1619–1626, 2008. 1.
[46]
A. Gyulassy, M. A. Duchaineau, V. Natarajan, V. Pascucci, E. Bringa, A. Higginbotham, and B. Hamann. Topologically Clean Distance Fields. IEEE TVCG, 13(6):1432–1439, 2007. 8.
[47]
A. Gyulassy, A. Knoll, K. Lau, B. Wang, P. Bremer, M. Papka, L. A. Curtiss, and V. Pascucci. Interstitial and Interlayer Ion Diffusion Geometry Extraction in Graphitic Nanosphere Battery Materials. IEEE TVCG, 22(1):916–925, 2016. 1.
[48]
A. Gyulassy, V. Natarajan, V. Pascucci, P. Bremer, and B. Hamann. Topology-based simplification for feature extraction from 3d scalar fields. In VIS, pp. 535–542. IEEE, 2005. 8.
[49]
H. Freudenthal. Simplizialzerlegungen von beschrankter Flachheit. Ann. of Math., 43(3):580–583, 1942. 3.
[50]
C. Heine, H. Leitte, M. Hlawitschka, F. Iuricich, L. De Floriani, G. Scheuermann, H. Hagen, and C. Garth. A survey of topology-based methods in visualization. CGF, 35(3):643–667, 2016. 1.
[51]
P. Hu, S. Boorboor, J. Marino, and A. E. Kaufman. Geometry-aware planar embedding of treelike structures. IEEE TVCG, 29(7):3182–3194, 2022. 7.
[52]
H.W. Kuhn. Some combinatorial lemmas in topology. IBM JoRD, 4(5):518–524, 1960. 3.
[53]
F. Iuricich. Persistence cycles for visual exploration of persistent homology. IEEE TVCG, 28(12):4966–4979, 2021. 1,7,9.
[54]
F. Iuricich, U. Fugacci, and L. D. Floriani. Topologically-consistent simplification of discrete morse complex. Comput. Graph., 51:157–166, 2015. 8.
[55]
J. Kasten, J. Reininghaus, I. Hotz, and H. Hege. Two-dimensional time-dependent vortex regions based on the acceleration magnitude. IEEE TVCG, 17(12):2080–2087, 2011. 1.
[56]
M. Kerber, D. Morozov, and A. Nigmetov. Geometry helps to compare persistence diagrams. ACM J. of Experimental Algorithmics, 22: 1–20, 2017. 5,6.
[57]
D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 13 pages. Ithaca, New York, 2015. 2,4,5,7.
[58]
P. Klacansky. Open Scientific Visualization Data Sets. https://klacansky.com/open-scivis-datasets/, 2020. 6.
[59]
J. Lukasczyk, C. Garth, R. Maciejewski, and J. Tierny. Localized topological simplification of scalar data. IEEE TVCG, 27(2):572–582, 2020. 1,2.
[60]
J. Lukasczyk, M. Will, F. Wetzels, G. H. Weber, and C. Garth. ExTreeM: Scalable Augmented Merge Tree Computation via Extremum Graphs. IEEE TVCG, 30(1):1085–1094, 2024. 1.
[61]
Y. Luo and B. J. Nelson. Accelerating iterated persistent homology computations with warm starts. Computational Geometry, 120:102089, 2024. 6.
[62]
R. G. C. Maack, J. Lukasczyk, J. Tierny, H. Hagen, R. Maciejewski, and C. Garth. Parallel computation of piecewise linear morse-smale segmentations. IEEE TVCG, 30(4):1942–1955, 2023. 1.
[63]
D. Maljovec, B. Wang, P. Rosen, A. Alfonsi, G. Pastore, C. Rabiti, and V. Pascucci. Topology-inspired partition-based sensitivity analysis and visualization of nuclear simulations. In PacificViz, pp. 64–71. IEEE, Taipei, 2016. 1.
[64]
C. Maria, J. Boissonnat, M. Glisse, and M. Yvinec. The gudhi library: Simplicial complexes and persistent homology. In Mathematical Software, pp. 167–174. Springer, 2014. 6.
[65]
J. Marino and A. E. Kaufman. Planar visualization of treelike structures. IEEE TVCG, 22(1):906–915, 2016. 7.
[66]
J. Munkres. Algorithms for the assignment and transportation problems. J. of SIAM, 5(1):32–38, 1957. 5.
[67]
F. Nauleau, F. Vivodtzev, T. Bridel-Bertomeu, H. Beaugendre, and J. Tierny. Topological Analysis of Ensembles of Hydrodynamic Turbulent Flows - An Experimental Study. In IEEE LDAV, pp. 1–11. Los Alamitos, 2022. 1.
[68]
X. Ni, M. Garland, and J. C. Hart. Fair morse functions for extracting the topological structure of a surface mesh. ACM Transactions on Graphics, 23(3):613–622, 2004. 2.
[69]
A. Nigmetov, A. S. Krishnapriyan, N. Sanderson, and D. Morozov. Topological regularization via persistence-sensitive optimization. Comp. Geom., 120:102086, 2024. 2.
[70]
A. Nigmetov and D. Morozov. Topological optimization with big steps. Discrete & Computational Geometry, 72:310–344, 2022., 6.
[71]
M. Olejniczak, A. S. P. Gomes, and J. Tierny. A Topological Data Analysis Perspective on Non-Covalent Interactions in Relativistic Calculations. IJQC, 120(8):e26133, 2019. 1.
[72]
M. Olejniczak and J. Tierny. Topological Data Analysis of Vortices in the Magnetically-Induced Current Density in LiH Molecule. PCCP, 25:5942–5947, 2023. 1.
[73]
V. Pascucci, G. Scorzelli, P. T. Bremer, and A. Mascarenhas. Robust online computation of Reeb graphs: simplicity and speed. ACM Transactions on Graphics, 26(3):58, 2007. 1,2.
[74]
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Z. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In NeurIPS, 12 pages. Curran Associates Inc., Red Hook, 2019. 6.
[75]
G. Patanè and B. Falcidieno. Computing smooth approximations of scalar functions with constraints. Comput. Graph., 33(3):399–413, 2009. 2.
[76]
A. Poulenard, P. Skraba, and M. Ovsjanikov. Topological function optimization for continuous shape matching. CGF, 37(5):13–25, 2018. 2,5.
[77]
V. Robins. Toward computing homology from finite approximations. Topology Proceedings, 24(1):503–532, 1999. 3.
[78]
V. Robins, P. J. Wood, and A. P. Sheppard. Theory and Algorithms for Constructing Discrete Morse Complexes from Grayscale Digital Images. IEEE Trans. PAMI, 33(8):1646–1658, 2011. 1,3,6.
[79]
N. Shivashankar and V. Natarajan. Parallel Computation of 3D Morse-Smale Complexes. CGF, 31(3):965–974, 2012. 1.
[80]
N. Shivashankar, P. Pranav, V. Natarajan, R. Van de Weygaert, E. P. Bos, and S. Rieder. Felix: A topology based framework for visual exploration of cosmic filaments. IEEE TVCG, 22(6):1745–1759, 2016., 8.
[81]
P. Soille. Optimal Removal of Spurious Pits in Digital Elevation Models. WRR, 40(12):W12509, 2004. 1, 2.
[82]
M. Soler, M. Petitfrere, G. Darche, M. Plainchault, B. Conche, and J. Tierny. Ranking Viscous Finger Simulations to an Acquired Ground Truth with Topology-Aware Matchings. In IEEE LDAV, pp. 62–72. Los Alamitos, 2019. 1.
[83]
E. Solomon, A. Wagner, and P. Bendich. A fast and robust method for global topological functional optimization. In AISTATS, pp. 109–117. PMLR, Cambridge, 2021. 2.
[84]
T. Sousbie. The Persistent Cosmic Web and its Filamentary Structure: Theory and Implementations. Royal Astronomical Society, 414:384–403, 2011. 1, 8.
[85]
J. Tierny, G. Favelier, J. A. Levine, C. Gueunet, and M. Michaux. The Topology ToolKit. IEEE TVCG, 24(1):832–842, 2017. 1,6.
[86]
J. Tierny and V. Pascucci. Generalized topological simplification of scalar fields on surfaces. IEEE TVCG, 18(12):2005–2013, 2012. 1,2.
[87]
TTK Contributors. TTK Data. https://github.com/topology-tool-kit/ttk-data/, 2020. 6,9.
[88]
TTK Contributors. TTK Online Example Database. https://topology-tool-kit.github.io/examples/, 2022. 1.
[89]
J. Vidal, J. Budin, and J. Tierny. Progressive Wasserstein Barycenters of Persistence Diagrams. IEEE TVCG, 26(1):151–161, 2020. 5.
[90]
T. Weinkauf, Y. I. Gingold, and O. Sorkine. Topology-based Smoothing of 2D Scalar Fields with C1-Continuity. CGF, 29(3): 1221–1230, 2010. 2.
[91]
D. Zeng, E. W. Chambers, D. Letscher, and T. Ju. To cut or to fill: a global optimization approach to topological simplification. ACM Trans. on Graphics, 39(6):201, 2020. 8.
[92]
D. Zeng, E. W. Chambers, D. Letscher, and T. Ju. Topological simplification of nested shapes. CGF, 41(5): 161–173, 2022. 8.
[93]
A. J. Zomorodian. Topology for computing. In M. J. Atallah and M. Blanton eds, Algorithms and Theory of Computation Handbook (Second Edition), chap. 3, pp. 82–112. CRC Press, Boca Raton, 2010. 1,2.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image IEEE Transactions on Visualization and Computer Graphics
IEEE Transactions on Visualization and Computer Graphics  Volume 31, Issue 1
Jan. 2025
1276 pages

Publisher

IEEE Educational Activities Department

United States

Publication History

Published: 10 September 2024

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 24 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media