[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

TimeSplines: Sketch-Based Authoring of Flexible and Idiosyncratic Timelines

Published: 03 November 2023 Publication History

Abstract

Timelines are essential for visually communicating chronological narratives and reflecting on the personal and cultural significance of historical events. Existing visualization tools tend to support conventional linear representations, but fail to capture personal idiosyncratic conceptualizations of time. In response, we built TimeSplines, a visualization authoring tool that allows people to sketch multiple free-form temporal axes and populate them with heterogeneous, time-oriented data via incremental and lazy data binding. Authors can bend, compress, and expand temporal axes to emphasize or de-emphasize intervals based on their personal importance; they can also annotate the axes with text and figurative elements to convey contextual information. The results of two user studies show how people appropriate the concepts in TimeSplines to express their own conceptualization of time, while our curated gallery of images demonstrates the expressive potential of our approach.

References

[1]
Z. Abidin, D. H. Widyantoro, and S. Akbar. A survey on visualization techniques to narrate interpersonal interactions between sportsmen. In Proc. IEEE Intl. Conf. Smart Technology and Applications (ICoSTA), 2020. 2.
[2]
M. Agrawala and C. Stolte. Rendering effective route maps: Improving usability through generalization. In Proc. ACM SIGGRAPH, 2001. 2, 9.
[3]
W. Aigner, S. Miksch, H. Schumann, and C. Tominski. Visualization of Time-Oriented Data, vol. 4. Springer, 2011. 2, 3.
[4]
F. Amini, M. Brehmer, G. Bolduan, C. Elmer, and B. Wiederkehr. “Evaluating data-driven stories & storytelling tools”. In N. H. Riche, C. Hurter, N. Diakopoulos, and S. Carpendale, eds., Data-Driven Storytelling. A K Peters/CRC Press, 2018. 6.
[5]
B. Bach, C. Shi, N. Heulot, T. Madhyastha, T. Grabowski, and P. Dragicevic. Time curves: Folding time to visualize patterns of temporal evolution in data. in IEEE TVCG (Proc. InfoVis), 22(1), 2015. 2.
[6]
M. Beaudouin-Lafon. Information Substrates: Interacting with Digital Matter. Technical report, Université Paris-Saclay, 2017. 4.
[7]
L. Berends. Embracing the visual: Using timelines with in-depth inter-views on substance use and treatment. Qualitative Report, 16(1), 2011. 2.
[8]
A. Bigelow, S. Drucker, D. Fisher, and M. Meyer. Reflections on how designers design with data. In Proc. AVI, 2014. 2, 3.
[9]
A. Bigelow, S. Drucker, D. Fisher, and M. Meyer. Iterating between tools to create and edit visualizations. in IEEE TVCG (Proc. InfoVis), 23(1), 2016. 2, 3.
[10]
M. Bohøj, N. G. Borchorst, N. O. Bouvin, S. Bødker, and P.-O. Zander. Timeline collaboration. In Proc. ACM CHI, 2010. 2.
[11]
M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-driven documents. in IEEE TVCG (Proc. InfoVis), 17(12), 2011. 6.
[12]
R. Brath and E. Banissi. Microtext line charts. In Proc. IEEE Intl. Conf. Information Visualisation (IV), 2017. 9.
[13]
M. Brehmer, B. Lee, B. Bach, N. H. Riche, and T. Munzner. Timelines revisited: A design space and considerations for expressive storytelling. in IEEE TVCG, 23(9), 2016. 1, 2, 3.
[14]
M. Brehmer, B. Lee, N. H. Riche, D. Tittsworth, K. Lytvynets, D. Edge, and C. White. Timeline Storyteller: The design & deployment of an inter-active authoring tool for expressive timeline narratives. in Proc. Computation + Journalism (C+J), 2019. 2.
[15]
J. Brosz, M. A. Nacenta, R. Pusch, S. Carpendale, and C. Hurter. Transmogrification: Casual manipulation of visualizations. In Proc. ACM UIST, 2013. 3, 6, 9.
[16]
J. Brown, A. Cesal, J. K. Dru, Z. Furnas, S. B. Robinson, L. Valade-DeMelo, and C. Harrison. The Data Visualization Society State of the Industry Survey, 2022. Accessed 2023-03-30. [Online]. Available: datavisualizationsociety.org/survey. 2.
[17]
C. Bryan, K.-L. Ma, and J. Woodring. Temporal summary images: An approach to narrative visualization via interactive annotation generation and placement. in IEEE TVCG (Proc. InfoVis), 23(1), 2017. 4.
[18]
L. Byrne, D. Angus, and J. Wiles. Figurative frames: A critical vocabulary for images in information visualization. Information Visualization, 18(1), 2019. 4, 9.
[19]
S. Carpendale, A. Thudt, C. Perin, and W. Willett. Subjectivity in personal storytelling with visualization. Information Design Journal, 23(1), 2017. 2.
[20]
G. Chalhoub and A. Sarkar. “It's freedom to put things where my mind wants”: Understanding and improving the user experience of structuring data in spreadsheets. In Proc. ACM CHI, 2022. 3.
[21]
W. O. Chao, T. Munzner, and M. van de Panne. Rapid pen-centric authoring of improvisational visualizations with NapkinVis. In Proc. InfoVis Posters, 2010. 3.
[22]
E. K. Choe, N. B. Lee, B. Lee, W. Pratt, and J. A. Kientz. Understanding quantified-selfers' practices in collecting and exploring personal data. In Proc. ACM CHI, 2014. 2.
[23]
J. J. Y. Chung, W. Kim, K. M. Yoo, H. Lee, E. Adar, and M. Chang. TaleBrush: sketching stories with generative pretrained language models. In Proc. ACM CHI, 2022. 3.
[24]
M. Ciolfi Felice, S. Fdili Alaoui, and W. E. Mackay. Knotation: Exploring and documenting choreographic processes. In Proc. ACM CHI, 2018. 3.
[25]
N. Elmqvist, Y. Riche, N. Henry-Riche, and J.-D. Fekete. Mélange: Space folding for visual exploration. in IEEE TVCG, 16(3), 2009. 2.
[26]
O. Fuhrman and L. Boroditsky. Cross-cultural differences in mental representations of time: Evidence from an implicit nonlinguistic task. Cognitive Science, 34(8), 2010. 2.
[27]
V. Goel. Creative brains: designing in the real world. Frontiers in Human Neuroscience, 8, 2014. 3.
[28]
C. Hammond. Time Warped: Unlocking the Mysteries of Time Perception. House of Anansi, 2012. 2, 9.
[29]
S. Haroz, R. Kosara, and S. L. Franconeri. The connected scatterplot for presenting paired time series. in IEEE TVCG, 22(9), 2015. 2, 6.
[30]
J. Hullman, N. Diakopoulos, and E. Adar. Contextifier: automatic generation of annotated stock visualizations. In Proc. ACM CHI, 2013. 4.
[31]
Icastic Consulting. ICATIME: What does time look like? [Online]. Available: https://www.icatime.net/. Accessed 2023-03-16. 2, 3.
[32]
D. F. Keefe, D. Acevedo, J. Miles, F. Drury, S. M. Swartz, and D. H. Laidlaw. Scientific sketching for collaborative vr visualization design. IEEE Transactions on Visualization and Computer Graphics, 14(4): pp. 835–847, 2008. 2.
[33]
R. Khulusi, J. Kusnick, J. Focht, and S. Jänicke. An interactive chart of biography. In Proc. IEEE PacificVis, 2019. 1, 2.
[34]
N. W. Kim, B. Bach, H. Im, S. Schriber, M. Gross, and H. Pfister. Visualizing nonlinear narratives with story curves. in IEEE TVCG (Proc. InfoVis), 24(1), 2017. 2, 3.
[35]
N. W. Kim, N. Henry Riche, B. Bach, G. Xu, M. Brehmer, K. Hinckley, M. Pahud, H. Xia, M. J. McGuffin, and H. Pfister. DataToon: Drawing dynamic network comics with pen+ touch interaction. In Proc. ACM CHI, 2019. 2, 3.
[36]
Y.-S. Kim, N. Henry Riche, B. Lee, M. Brehmer, M. Pahud, K. Hinckley, and J. Hullman. Inking your insights: Investigating digital externalization behaviors during data analysis. In Proc. ACM ISS, 2019. 3, 4, 9.
[37]
B. Lee, R. H. Kazi, and G. Smith. SketchStory: Telling more engaging stories with data through freeform sketching. in IEEE TVCG (Proc. InfoVis), 19(12), 2013. 3.
[38]
B. Lee, G. Smith, N. H. Riche, A. Karlson, and S. Carpendale. Sketchln-sight: Natural data exploration on interactive whiteboards leveraging pen and touch interaction. In Proc. IEEE PacificVis, 2015. 3.
[39]
H. Lin, D. Akbaba, M. Meyer, and A. Lex. Data hunches: Incorporating personal knowledge into visualizations. in IEEE TVCG (Proc. VIS), 29(1), 2023. 3, 4, 9.
[40]
Z. Liu, J. Thompson, A. Wilson, M. Dontcheva, J. Delorey, S. Grigg, B. Kerr, and J. Stasko. Data Illustrator: Augmenting vector design tools with lazy data binding for expressive visualization authoring. In Proc. ACM CHI, 2018. 2, 3, 4.
[41]
G. Lupi and S. Posavec. Dear Data. Princeton Architectural Press, 2016. 3.
[42]
M. Monroe, R. Lan, H. Lee, C. Plaisant, and B. Shneiderman. Temporal event sequence simplification. in IEEE TVCG (Proc. InfoVis), 19(12), 2013. 1, 2.
[43]
J. Moore, P. Goffin, M. Meyer, P. Lundrigan, N. Patwari, K. Sward, and J. Wiese. Managing in-home environments through sensing, annotating, and visualizing air quality data. in Proc. ACM UbiComp, 2(3), 2018. 4.
[44]
H. Otten, L. Hildebrand, T. Nagel, M. Dörk, and B. Müller. Shifted Maps: Revealing spatio-temporal topologies in movement data. In Proc. IEEE VIS Arts Program (VISAP), 2018. 2.
[45]
P. Parsons. Understanding data visualization design practice. in IEEE TVGC (Proc. VIS), 28(1), 2022. 2.
[46]
C. Perin. The symmetry of my life: An autobiographical visualization. In Proc. IEEE VIS Arts Program (VISAP), 2017. [Online]. Available: hal.inria.fr/hal-01587944/. 2, 3, 9.
[47]
C. Perin, T. Wun, R. Pusch, and S. Carpendale. Assessing the graphical perception of time and speed on 2d+ time trajectories. in IEEE TVCG (Proc. InfoVis), 24(1), 2017. 2, 4.
[48]
D. Ren, M. Brehmer, B. Lee, T. Höllerer, and E. K. Choe. ChartAccent: Annotation for data-driven storytelling. In Proc. IEEE PacificVis, 2017. 4.
[49]
D. Ren, B. Lee, and M. Brehmer. Charticulator: Interactive construction of bespoke chart layouts. in IEEE TVGC (Proc. InfoVis), 25(1), 2018. 3.
[50]
D. Ren, B. Lee, M. Brehmer, and N. H. Riche. Reflecting on the evaluation of visualization authoring systems: Position paper. In Proc. IEEE Evaluation and Beyond (BELIV), 2018. 2, 6.
[51]
M. Resnick, B. Myers, K. Nakakoji, B. Shneiderman, R. Pausch, T. Selker, and M. Eisenberg. Design Principles for Tools to Support Creative Thinking. Carnegie Mellon University, 2005. 6.
[52]
H. Romat, N. Henry Riche, K. Hinckley, B. Lee, C. Appert, E. Pietriga, and C. Collins. Activeink: (th)inking with data. In Proc. ACM CHI, 2019. 2, 3.
[53]
D. Rosenberg and A. Grafton. Cartographies of Time: A History of the Timeline. Princeton Architectural Press, 2013. 2.
[54]
A. Satyanarayan, B. Lee, D. Ren, J. Heer, J. Stasko, J. Thompson, M. Brehmer, and Z. Liu. Critical reflections on visualization authoring systems. in IEEE TVCG (Proc. InfoVis), 26(1), 2019. 2, 3.
[55]
D. Schroeder, D. Coffey, and D. Keefe. Drawing with the flow: A sketch-based interface for illustrative visualization of 2d vector fields. In Proceedings of the Seventh Sketch-Based Interfaces and Modeling Symposium, pp. 49–56, 2010. 3.
[56]
D. Schroeder and D. F. Keefe. Visualization-by-sketching: An artist's interface for creating multivariate time-varying data visualizations. IEEE transactions on visualization and computer graphics, 22(1): pp. 877–885, 2015. 3.
[57]
E. Shen, S. Li, X. Cai, L. Zeng, and W. Wang. Sketch-based interactive visualization: a survey. Journal of Visualization, 17: pp. 275–294, 2014. 3.
[58]
J. Snyder, E. Murnane, C. Lustig, and S. Voida. Visually encoding the lived experience of bipolar disorder. In Proc. ACM CHI, 2019. 2.
[59]
L. Sterne. The Life and Opinions of Tristram Shandy, Gentleman: In Four Volumes, vol. 9. Steudel, p. 1805. 3.
[60]
Y. Tanahashi and K.-L. Ma. Design considerations for optimizing storyline visualizations. in IEEE TVCG (Proc. InfoVis), 18(12), 2012. 2, 9.
[61]
E. Thiry, S. Lindley, R. Banks, and T. Regan. Authoring personal histories: Exploring the timeline as a framework for meaning making. In Proc. ACM CHI, 2013. 1, 2, 3.
[62]
A. Thudt, S. Carpendale, and D. Baur. Autobiographical visualizations: challenges in personal storytelling. In Proc. ACM DIS PVA Workshop: A Personal Perspective on Visualization and Visual Analytics, 2014. 2.
[63]
P. Tolmie, A. Crabtree, T. Rodden, J. Colley, and E. Luger. “This has to be the cats”: Personal data legibility in networked sensing systems. In Proc. ACM CSCW, 2016. 1, 4.
[64]
C. Torna. “Visualizing time”. In O. Ast, ed., Infinite Instances: Studies and Images of Time, pp. 42–51. Mark Batty Publisher, 2011. 1, 2, 9.
[65]
T. Tsandilas. StructGraphics: Flexible visualization design through data-agnostic and reusable graphical structures. in IEEE TVCG (Proc. VIS), 27(2), 2021. 3.
[66]
T. Tsandilas, A. Bezerianos, and T. Jacob. SketchSliders: Sketching widgets for visual exploration on wall displays. In Proc. ACM CHI, 2015. 3.
[67]
A. Tversky and D. Kahneman. Availability: A heuristic for judging frequency and probability. Cognitive Psychology, 5(2), 1973. 2.
[68]
B. Tversky, S. Kugelmass, and A. Winter. Cross-cultural and developmental trends in graphic productions. Cognitive psychology, 23(4), 1991. 2.
[69]
M. Twain. How to make history dates stick. in Harper's Monthly Magazine, 130(775), 1914. [Online]. Available: http://www.twainquotes.com/HistoryDates/HistoryDates.html. 2, 3, 6.
[70]
J. J. van Wijk and E. R. van Selow. Cluster and calendar based visualization of time series data. In Proc. IEEE InfoVis, 1999. 2.
[71]
J. Walker, R. Borgo, and M. W. Jones. TimeNotes: a study on effective chart visualization and interaction techniques for time-series data. in IEEE TVCG (Proc. InfoVis), 22(1), 2016. 2.
[72]
J. Walny, J. Haber, M. Dörk, J. Sillito, and S. Carpendale. Follow that sketch: Lifecycles of diagrams and sketches in software development. In Proc. IEEE Intl. Workshop Visualizing Software for Understanding and Analysis (VISSOFT), 2011. 3.
[73]
J. Walny, S. Huron, and S. Carpendale. An exploratory study of data sketching for visual representation. in Computer Graphics Forum (Proc. EuroVis), 34(3), 2015. 3.
[74]
K. Wongsuphasawat, J. A. Guerra Gómez, C. Plaisant, T. D. Wang, M. Taieb-Maimon, and B. Shneiderman. LifeFlow: visualizing an overview of event sequences. In Proc. ACM CHI, 2011. 2.
[75]
H. Xia, N. Henry Riche, F. Chevalier, B. De Araujo, and D. Wigdor. DataInk: Direct and creative data-oriented drawing. In Proc. ACM CHI, 2018. 2, 3.
[76]
J. E. Zhang, N. Sultanum, A. Bezerianos, and F. Chevalier. DataQuilt: Extracting visual elements from images to craft pictorial visualizations. In Proc. ACM CHI, 2020. 3.
[77]
Y. Zhang, K. Chanana, and C. Dunne. IDMVis: Temporal event sequence visualization for type 1 diabetes treatment decision support. in IEEE TVCG (Proc. InfoVis), 25(1), 2010. 2.
[78]
J. Zhao, F. Chevalier, and R. Balakrishnan. Kronominer: using multi-foci navigation for the visual exploration of time-series data. In Proc. ACM CHI, 2011. 2.
[79]
J. Zhao, F. Chevalier, E. Pietriga, and R. Balakrishnan. Exploratory analysis of time-series with chronolenses. in IEEE TVCG (Proc. InfoVis), 17(12), 2011. 2.

Cited By

View all
  • (2024)DataGarden: Formalizing Personal Sketches into Structured Visualization TemplatesIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.345633631:1(1268-1278)Online publication date: 10-Sep-2024
  • (2024)Path-Based Design Model for Constructing and Exploring Alternative VisualisationsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.345632331:1(1158-1168)Online publication date: 10-Sep-2024

Index Terms

  1. TimeSplines: Sketch-Based Authoring of Flexible and Idiosyncratic Timelines
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image IEEE Transactions on Visualization and Computer Graphics
      IEEE Transactions on Visualization and Computer Graphics  Volume 30, Issue 1
      Jan. 2024
      1456 pages

      Publisher

      IEEE Educational Activities Department

      United States

      Publication History

      Published: 03 November 2023

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 10 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)DataGarden: Formalizing Personal Sketches into Structured Visualization TemplatesIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.345633631:1(1268-1278)Online publication date: 10-Sep-2024
      • (2024)Path-Based Design Model for Constructing and Exploring Alternative VisualisationsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.345632331:1(1158-1168)Online publication date: 10-Sep-2024

      View Options

      View options

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media