[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

<italic>KnowledgePearls</italic>: Provenance-Based Visualization Retrieval

Published: 01 January 2019 Publication History

Abstract

Storing analytical provenance generates a knowledge base with a large potential for recalling previous results and guiding users in future analyses. However, without extensive manual creation of meta information and annotations by the users, search and retrieval of analysis states can become tedious. We present KnowledgePearls, a solution for efficient retrieval of analysis states that are structured as provenance graphs containing automatically recorded user interactions and visualizations. As a core component, we describe a visual interface for querying and exploring analysis states based on their similarity to a partial definition of a requested analysis state. Depending on the use case, this definition may be provided explicitly by the user by formulating a search query or inferred from given reference states. We explain our approach using the example of efficient retrieval of demographic analyses by Hans Rosling and discuss our implementation for a fast look-up of previous states. Our approach is independent of the underlying visualization framework. We discuss the applicability for visualizations which are based on the declarative grammar Vega and we use a Vega-based implementation of Gapminder as guiding example. We additionally present a biomedical case study to illustrate how KnowledgePearls facilitates the exploration process by recalling states from earlier analyses.

References

[1]
C. Ahlberg. Spotfire: An Information Exploration Environment. ACM SIGMOD Record, 25 (4) pp. 25–29, 1996. https://doi.org/10.1145/245882.245893.
[2]
T. Aittokallio and B. Schwikowski. Graph-based Methods for Analysing Networks in Cell Biology. Briefings in Bioinformatics, 7 (3) pp. 243–255, 2006. https://doi.org/10.1093/bib/bbl022.
[3]
L. Bavoil, S.P. Callahan, C. Scheidegger, H.T. Vo, P. Crossno, C.T. Silva, and J. Freire. VisTrails: Enabling Interactive Multiple-View Visualizations. In Proceedings of the IEEE Conference on Visualization (VIS '05), pp. pp. 135–142. IEEE, 2005. https://doi.org/10.1109/VISUAL.2005.1532788.
[4]
E. Bertini, A. Tatu, and D. Keim. Quality Metrics in High-Dimensional Data Visualization: An Overview and Systematization. IEEE Transactions on Visualization and Computer Graphics, 17 (12) pp. 2203–2212, 2011. https://doi.org/10.1109/TVCG.2011.229.
[5]
O. Biton, S. Cohen-Boulakia, S.B. Davidson, and C.S. Hara. Querying and Managing Provenance Through User Views in Scientific Workflows. In Proceedings of the IEEE International Conference on Data Engineering (ICDE '08), pp. 1072–1081. IEEE, 2008. https://doi.org/10.1109/ICDE.2008.4497516.
[6]
M.A. Borkin, C.S. Yeh, M. Boyd, P. Macko, K.Z. Gajos, M. Seltzer, and H. Pfister. Evaluation of Filesystem Provenance Visualization Tools. IEEE Transactions on Visualization and Computer Graphics, 19 (12) pp. 2476–2485, 2013. https://doi.org/10.1109/TVCG.2013.155.
[7]
E. Clarkson, K. Desai, and J. Foley. ResultMaps: Visualization for Search Interfaces. IEEE Transactions on Visualization and Computer Graphics, 15 (6) pp. 1057–1064, 2009. https://doi.org/10.1109/TVCG.2009.176.
[8]
A. Dasgupta and R. Kosara. Pargnostics: Screen-Space Metrics for Parallel Coordinates. IEEE Transactions on Visualization and Computer Graphics (InfoVis'10), 16 (6) pp. 1017–1026, 2010. https://doi.org/10.1109/TVCG.2010.184.
[9]
N. Elmqvist and J.-D. Fekete. Hierarchical Aggregation for Information Visualization: Overview, Techniques, and Design Guidelines. IEEE Transactions on Visualization and Computer Graphics, 16 (3) pp. 439–454, 2010. https://doi.org/10.1109/TVCG.2009.84.
[10]
J. Freire, C.T. Silva, D. Koop, and E. Santos. Provenance for Computational Tasks: A Survey. Computing in Science & Engineering, 10: pp. 11–21, 2008. https://doi.org/10.1109/MCSE.2008.79.
[11]
J. Frew, D. Metzger, and P. Slaughter. Automatic Capture and Reconstruction of Computational Provenance. Concurrency and Computation: Practice and Experience, 20 (5) pp. 485–496, 2008. https://doi.org/10.1002/cpe.1247.
[12]
D. Gotz and M.X. Zhou. Characterizing Users' Visual Analytic Activity for Insight Provenance. Information Visualization, 8 (1) pp. 42–55, 2009. https://doi.org/10.1057/ivs.2008.31.
[13]
S. Gratzl, A. Lex, N. Gehlenborg, N. Cosgrove, and M. Streit. From Visual Exploration to Storytelling and Back Again. Computer Graphics Forum, 35 (3) pp. 491–500, 2016. https://doi.org/10.1111/cgf.12925.
[14]
S. Gratzl, A. Lex, N. Gehlenborg, H. Pfister, and M. Streit. LineUp: Visual Analysis of Multi-Attribute Rankings. IEEE Transactions on Visualization and Computer Graphics (InfoVis '13), 19 (12) pp. 2277–2286, 2013. https://doi.org/10.1109/TVCG.2013.173.
[15]
J. Heer, J. Mackinlay, C. Stolte, and M. Agrawala. Graphical Histories for Visualization: Supporting Analysis, Communication, and Evaluation. IEEE Transactions on Visualization and Computer Graphics (InfoVis '08), 14 (6) pp. 1189–1196, 2008. https://doi.org/10.1109/TVCG.2008.137.
[16]
M. Herschel, R. Diestelkmper, and H. Ben Lahmar. A survey on provenance: What for? What form? What from? The VLDB Journal, 26 (6) pp. 881–906, Dec. 2017. https://doi.org/10.1007/s00778-017-0486-1.
[17]
D. Jung, W. Kim, H. Song, J.-I. Hwang, Hwang, B. Lee, B. Kim, and J. Seo. ChartSense: Interactive Data Extraction from Chart Images. pp. 6706–6717. ACM Press, 2017. https://doi.org/10.1145/3025453.3025957.
[18]
S. Khan, U. Kanturska, T. Waters, J. Eaton, R. Baares-Alcntara, and M. Chen. Ontology-assisted provenance visualization for supporting enterprise search of engineering and business files. Advanced Engineering Informatics, 30 (2) pp. 244–257, 2016. https://doi.org/10.1016/j.aei.2016.04.003.
[19]
M. Kreuseler, T. Nocke, and H. Schumann. A History Mechanism for Visual Data Mining. In Proceedings of the IEEE Symposium on Information Visualization (InfoVis '04), pp. 49–56. IEEE, 2004. https://doi.org/10.1109/INFVIS.2004.2.
[20]
E. Maguire, P. Rocca-Serra, S.-A. Sansone, J. Davies, and M. Chen. Taxonomy-Based Glyph Design with a Case Study on Visualizing Workflows of Biological Experiments. IEEE Transactions on Visualization and Computer Graphics (InfoVis '12), 18 (12) pp. 2603–2612, 2012. https://doi.org/10.1109/TVCG.2012.271.
[21]
R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network Motifs: Simple Building Blocks of Complex Networks. Science, 298 (5594) pp. 824–827, 2002. https://doi.org/10.1126/science.298.5594.824.
[22]
G. Ozsoyoglu and H. Wang. Example-based graphical database query languages. Computer, 26 (5) pp. 25–38, May 1993. https://doi.org/10.1109/2.211893.
[23]
S. Pajer, M. Streit, T. Torsney-Weir, F. Spechtenhauser, T. Mller, and H. Piringer. WeightLifter: Visual Weight Space Exploration for Multi-Criteria Decision Making. IEEE Transactions on Visualization and Computer Graphics (InfoVis'16), 23 (1) pp. 611–620, 2017. https://doi.org/10.1109/TVCG.2016.2598589.
[24]
Pat Hanrahan, Chris Stolte, and Jock Mackinlay. Tableau: Visual Analysis for Everyone, 2007.
[25]
R. Pienta, F. Hohman, A. Tamersoy, A. Endert, S. Navathe, H. Tong, and D.H. Chau. Visual Graph Query Construction and Refinement. pp. 1587–1590. ACM Press, 2017. https://doi.org/10.1145/3035918.3056418.
[26]
J. Poco and J. Heer. Reverse-Engineering Visualizations: Recovering Visual Encodings from Chart Images. Computer Graphics Forum, 36 (3) pp. 353–363, June 2017. https://doi.org/10.1111/cgf.13193.
[27]
J. Poco, A. Mayhua, and J. Heer. Extracting and Retargeting Color Mappings from Bitmap Images of Visualizations. IEEE Transactions on Visualization and Computer Graphics, 24 (1) pp. 637–646, Jan. 2018. https://doi.org/10.1109/TVCG.2017.2744320.
[28]
B. Prez, J. Rubio, and C. Senz-Adn. A systematic review of provenance systems. Knowledge and Information Systems, Feb. 2018. https://doi.org/10.1007/spp.10115-018-1164-3.
[29]
E. Ragan, A. Endert, J. Sanyal, and J. Chen. Characterizing Provenance in Visualization and Data Analysis: An Organizational Framework of Provenance Types and Purposes. IEEE Transactions on Visualization and Computer Graphics (VAST'15), 22 (1) pp. 31–40, 2016. https://doi.org/10.1109/TVCG.2015.2467551.
[30]
G. Salton, A. Wong, and C.-S. Yang. A Vector Space Model for Automatic Indexing. Communications of the ACM, 18 (11) pp. 613–620, 1975. https://doi.org/10.1145/361219.361220.
[31]
A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-Lite: A Grammar of Interactive Graphics. IEEE Transactions on Visualization and Computer Graphics, 23 (1) pp. 341–350, 2017. https://doi.org/10.1109/TVCG.2016.2599030.
[32]
A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer. Reactive Vega: A Streaming Dataflow Architecture for Declarative Interactive Visualization. IEEE Transactions on Visualization and Computer Graphics, 22 (1) pp. 659–668, Jan. 2016. https://doi.org/10.1109/TVCG.2015.2467091.
[33]
A. Satyanarayan, K. Wongsuphasawat, and J. Heer. Declarative Interaction Design for Data Visualization. In Proceedings of the ACM Symposium on User Interface Software and Technology (UIST '14), pp. 669–678. ACM Press, 2014. https://doi.org/10.1145/2642918.2647360.
[34]
M. Savva, N. Kong, A. Chhajta, L. Fei-Fei, M. Agrawala, and J. Heer. ReVision: automated classification, analysis and redesign of chart images. p. 393. ACM Press, 2011. https://doi.org/10.1145/2047196.2047247.
[35]
C.E. Scheidegger, H.T. Vo, D. Koop, J. Freire, and C.T. Silva. Querying and re-using workflows with VisTrails. In Proceedings of the ACM SIGMOD Conference on Management of Data (SIGMOD '08), pp. 1251–1254. ACM, 2008. https://doi.org/10.1145/1376616.1376747.
[36]
B. Shneiderman, C. Williamson, and C. Ahlberg. Dynamic Queries: Database Searching by Direct Manipulation. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI'92), pp. 669–670. ACM, 1992. https://doi.org/10.1145/142750.143082.
[37]
Y.B. Shrinivasan and J.J. van Wijk. Supporting the analytical reasoning process in information visualization. In Proceedings of the SIGCHI conference on human factors in computing systems, pp. 1237–1246. ACM, 2008. https://doi.org/10.1145/1357054.1357247.
[38]
G. Smith, M. Czerwinski, B.R. Meyers, G. Robertson, and D.S. Tan. FacetMap: A Scalable Search and Browse Visualization. IEEE Transactions on Visualization and Computer Graphics, 12(5), 2006. https://doi.org/10.1109/TVCG.2006.142.
[39]
A. Srinivasan and J. Stasko. Orko: Facilitating Multimodal Interaction for Visual Exploration and Analysis of Networks. IEEE Transactions on Visualization and Computer Graphics (InfoVis '17), PP(99): pp. 1–1, 2017. https://doi.org/10.1109/TVCG.2017.2745219.
[40]
H. Stitz, S. Gratzl, W. Aigner, and M. Streit. ThermalPlot: Visualizing Multi-Attribute Time-Series Data Using a Thermal Metaphor. IEEE Transactions on Visualization and Computer Graphics, 22 (12) pp. 2594–2607, 2016. https://doi.org/10.1109/TVCG.2015.2513389.
[41]
H. Stitz, S. Luger, M. Streit, and N. Gehlenborg. AVOCADO: Visualization of WorkflowDerived Data Provenance for Reproducible Biomedical Research. Computer Graphics Forum, 35 (3) pp. 481–490, 2016. https://doi.org/10.1111/cgf.12924.
[42]
C. Stolte, D. Tang, and P. Hanrahan. Polaris: A System for Query, Analysis, and Visualization of Multidimensional Relational Databases. IEEE Transactions on Visualization and Computer Graphics, 8 (1) pp. 52–65, 2002. https://doi.org/10.1109/2945.981851.
[43]
C. Stolte, D. Tang, and P. Hanrahan. Query, Query, Analysis, and Visualization of Hierarchically Structured Data Using Polaris. In Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '02), pp. 112–122. ACM, 2002. https://doi.org/10.1145/775047.775064.
[44]
M. Streit, S. Gratzl, H. Stitz, A. Wernitznig, T. Zichner, and C. Haslinger. Ordino: visual analysis tool for ranking and exploring genes, cell lines, and tissue samples. 2018. https://doi.org/10.1101/277848.
[45]
L. Wilkinson. The Grammarof Graphics. Springer, 2nd ed., 2005.
[46]
L. Wilkinson, A. Anand, and R. Grossman. Graph-Theoretic Scagnostics. In Proceedings of the IEEE Symposium on Information Visualization (InfoVis'05), pp. 157–164, 2005. https://doi.org/10.1109/INFVIS.2005.1532142.
[47]
M.M. Zloof. Query-by-Example: A data base language. IBM Systems Journal, 16 (4) pp. 324–343, 1977. https://doi.org/10.1147/sj.164.0324.

Cited By

View all
  • (2024)Visualizing Intelligent Tutor Interactions for Responsive PedagogyProceedings of the 2024 International Conference on Advanced Visual Interfaces10.1145/3656650.3656667(1-9)Online publication date: 3-Jun-2024
  • (2024)A Qualitative Analysis of Common Practices in Annotations: A Taxonomy and Design SpaceIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.345635931:1(360-370)Online publication date: 9-Sep-2024
  • (2024)DaedalusData: Exploration, Knowledge Externalization and Labeling of Particles in Medical Manufacturing — A Design StudyIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.345632931:1(54-64)Online publication date: 23-Sep-2024
  • Show More Cited By

Index Terms

  1. KnowledgePearls: Provenance-Based Visualization Retrieval
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image IEEE Transactions on Visualization and Computer Graphics
        IEEE Transactions on Visualization and Computer Graphics  Volume 25, Issue 1
        Jan. 2019
        1266 pages

        Publisher

        IEEE Educational Activities Department

        United States

        Publication History

        Published: 01 January 2019

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 13 Dec 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)Visualizing Intelligent Tutor Interactions for Responsive PedagogyProceedings of the 2024 International Conference on Advanced Visual Interfaces10.1145/3656650.3656667(1-9)Online publication date: 3-Jun-2024
        • (2024)A Qualitative Analysis of Common Practices in Annotations: A Taxonomy and Design SpaceIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.345635931:1(360-370)Online publication date: 9-Sep-2024
        • (2024)DaedalusData: Exploration, Knowledge Externalization and Labeling of Particles in Medical Manufacturing — A Design StudyIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.345632931:1(54-64)Online publication date: 23-Sep-2024
        • (2024)Loops: Leveraging Provenance and Visualization to Support Exploratory Data Analysis in NotebooksIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.345618631:1(1213-1223)Online publication date: 23-Sep-2024
        • (2024)PW: A Visual Approach for Building, Managing, and Analyzing Weather Simulation Ensembles at RuntimeIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.332651430:1(738-747)Online publication date: 1-Jan-2024
        • (2023)Tracing and Visualizing Human-ML/AI Collaborative Processes through Artifacts of Data WorkProceedings of the 2023 CHI Conference on Human Factors in Computing Systems10.1145/3544548.3580819(1-22)Online publication date: 19-Apr-2023
        • (2023)Provectories: Embedding-Based Analysis of Interaction Provenance DataIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.313569729:12(4816-4831)Online publication date: 1-Dec-2023
        • (2022)Structure-aware Visualization RetrievalProceedings of the 2022 CHI Conference on Human Factors in Computing Systems10.1145/3491102.3502048(1-14)Online publication date: 29-Apr-2022
        • (2022)Knowledge Rocks: Adding Knowledge Assistance to Visualization SystemsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.311468728:1(1117-1127)Online publication date: 1-Jan-2022
        • (2022)Visionary: a framework for analysis and visualization of provenance dataKnowledge and Information Systems10.1007/s10115-021-01645-664:2(381-413)Online publication date: 1-Feb-2022
        • Show More Cited By

        View Options

        View options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media