[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

An Efficient Framework for Generating Storyline Visualizations from Streaming Data

Published: 01 June 2015 Publication History

Abstract

This paper presents a novel framework for applying storyline visualizations to streaming data. The framework includes three components: a new data management scheme for processing and storing the incoming data, a layout construction algorithm specifically designed for incrementally generating storylines from streaming data, and a layout refinement algorithm for improving the legibility of the visualization. By dividing the layout computation to two separate components, one for constructing and another for refining, our framework effectively provides the users with the ability to follow and reason dynamic data. The evaluation studies of our storyline visualization framework demonstrate its efficacy to present streaming data as well as its superior performance over existing methods in terms of both computational efficiency and visual clarity.

References

[1]
Y. Tanahashi and K.-L. Ma, “Design considerations for optimizing storyline visualizations,” IEEE Trans. Vis. Comput. Graph., vol. 18, no. 12, pp. 2679 –2688, Dec. 2012.
[2]
S. Liu, Y. Wu, E. Wei, M. Liu, and Y. Liu, “Storyflow: Tracking the evolution of stories,” IEEE Trans. Vis. Comput. Graph., vol. 19, no. 12, pp. 2436–2445, Dec. 2013.
[3]
R. Munroe. (2009). xkcd #657: Movie narrative charts. [Online]. Available: http://xkcd.com/657
[4]
M. J. Kraak, “The space-time cube revisited from a geovisualization perspective, ” in Proc. 21st Int. Cartograph. Conf., 2003, pp. 1988 –1995.
[5]
P. Gatalsky, N. Andrienko, and G. Andrienko, “ Interactive analysis of event data using space-time cube,” in Proc. 8th Int. Conf. Inf. Vis., 2004, pp. 145–152.
[6]
T. Kapler and W. Wright, “Geotime information visualization,” in Proc. IEEE Symp. Inf. Vis. , 2004, pp. 25–32.
[7]
U. Brandes and S. Corman, “Visual unrolling of network evolution and the analysis of dynamic discourse, ” in Proc. IEEE Symp. Inf. Vis., 2002, pp. 145–151.
[8]
G. Kumar and M. Garland, “Visual exploration of complex time-varying graphs,” IEEE Trans. Vis. Comput. Graph., vol. 12, no. 5, pp. 805–812, Sep./Oct. 2006.
[9]
M. Itoh, M. Toyoda, and M. Kitsuregawa, “An interactive visualization framework for time-series of web graphs in a 3D environment,” in Proc. 14th Int. Conf. Inf. Vis., 2010, pp. 54–60.
[10]
P. Kristensson, N. Dahlback, D. Anundi, M. Bjornstad, H. Gillberg, J. Haraldsson, I. Martensson, M. Nordvall, and J. Stahl, “An evaluation of space time cube representation of spatiotemporal patterns,” IEEE Trans. Vis. Comput. Graph., vol. 15, no. 4, pp. 696–702, Jul/Aug. 2009.
[11]
T. Crnovrsanin, C. Muelder, C. Correa, and K.-L. Ma, “Proximity-based visualization of movement trace data,” in Proc. IEEE Symp. Vis. Anal. Sci. Technol., Oct. 2009, pp. 11–18.
[12]
A. Shrestha, B. Miller, Y. Zhu, and Y. Zhao, “Storygraph: Extracting patterns from spatio-temporal data,” in Proc. ACM SIGKDD Workshop Interact. Data Exploration Anal. , 2013, pp. 95–103.
[13]
T. Falkowski, B. Bartelheimer, and M. Spiliopoulou, “ Mining and visualizing the evolution of subgroups in social networks,” in Proc. IEEE/WIC/ACM Int. Conf. Web Intell., 2006, pp. 52–58.
[14]
A. Bezerianos, P. Dragicevic, J. Fekete, J. Bae, and B. Watson, “Geneaquilts: A system for exploring large genealogies,” IEEE Trans. Vis. Comput. Graph., vol. 16, no. 6, pp. 1073–1081, Nov/Dec. 2010.
[15]
K. Reda, C. Tantipathananandh, A. Johnson, J. Leigh, and T. Berger-Wolf, “Visualizing the evolution of community structures in dynamic social networks,” in Proc. 13th Eur./IEEE-VGTC Conf. Vis., 2011, pp. 1061–1070.
[16]
N. W. Kim, S. K. Card, and J. Heer, “Tracing genealogical data with timenets,” in Proc. Int. Conf. Adv. Vis. Interfaces, 2010, pp. 241–248.
[17]
W. Cui, S. Liu, L. Tan, C. Shi, Y. Song, Z. Gao, H. Qu, and X. Tong, “Textflow: Towards better understanding of evolving topics in text,” IEEE Trans. Vis. Comput. Graph., vol. 17, no. 12, pp. 2412–2421, Dec. 2011.
[18]
V. Ogievetsky. (2009, Mar.) PlotWeaver xkcd/657 creation tool. [Online]. Available: http://ogievetsky.com/PlotWeaver/
[19]
M. Ogawa and K.-L. Ma, “Software evolution storylines,” in Proc. 5th Int. Symp. Softw. Vis., 2010, pp. 35–42.
[20]
C. Muelder, T. Crnovrsanin, A. Sallaberry, and K.-L. Ma, “Egocentric storylines for visual analysis of large dynamic graphs,” in Proc. IEEE Int. Conf. Big Data, 2013, pp. 56–62.
[21]
S. Boettcher and A. G. Percus, “Extremal optimization: Methods derived from co-evolution,” in Proc. Genetic Evol. Comput. Conf., 1999, vol. 1, pp. 825– 832.
[22]
M. L. Huang, P. Eades, and J. Wang, “On-line animated visualization of huge graphs using a modified spring algorithm,” J. Visual Lang. Comput., vol. 9, no. 6, pp. 623–645, 1998.
[23]
H. Purchase, E. Hoggan, and C. Grg, “How important is the mental map? An empirical investigation of a dynamic graph layout algorithm,” in Graph Drawing, New York, NY, USA: Springer, 2007, vol. 4372, pp. 184–195.
[24]
T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 3rd ed. Cambridge, MA, USA: MIT Press, 2009.
[25]
Y. Tanahashi. (2013, Nov.) Movie interaction datasets [Online]. Available: http://vis.cs.ucdavis.edu/~t̃anahashi/data_downloads/storyline_vi sualizations/.
[26]
M. Andersen and L. Vandenberghe. Cvxopt: Python software for convex optimization [Online]. Available: http://cvxopt.org/, Mar. 2014.
[27]
E. Gansner, E. Koutsofios, S. North, and K.-P. Vo, “A technique for drawing directed graphs,” IEEE Trans. Softw. Eng., vol. 19, no. 3, pp. 214–230, Mar. 1993.
[28]
K. Sugiyama, S. Tagawa, and M. Toda, “Methods for visual understanding of hierarchical system structures,” IEEE Trans. Syst., Man Cybern , vol. 11, no. 2, pp. 109–125, Feb. 1981.
[29]
Z. Maoz. (2005). Dyadic MID Dataset (version 2.0) [Online]. Available: http://vanity.dss.ucdavis.edu/~maoz/dyadmid.html
[30]
M. Ogawa. Software development history logs [Online]. Available: http://vis.cs.ucdavis.edu/~ogawa/datasets/, Jan. 2015.
[31]
W. W. Cohen. Enron email dataset [Online]. Available: https://www.cs.cmu.edu/~enron/, Jan. 2015.
[32]
A. Clauset, M. E. J. Newman, and C. Moore, “ Finding community structure in very large networks,” Phy. Rev. E, vol. 70, pp. 1–6, 2004.
[33]
M. ApS. Mosek package [Online]. Available: http://www.mosek.com, Mar. 2014.
[34]
International Business Machines Corp. CPLEX Optimizer [Online]. Available: http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/, Mar. 2014.
[35]
T. Mitra and E. Gilbert, “Have you heard?: How gossip flows through workplace email,” in Proc. AAAI Int. Conf. Weblogs Soc. Media, 2012, pp. 242–249.
[36]
S. Havre, B. Hetzler, and L. Nowell, “Themeriver: Visualizing theme changes over time,” in Proc. IEEE Symp. Inform. Vis., 2000, pp. 115–123.
[37]
L. Byron and M. Wattenberg, “Stacked graphs-geometry & aesthetics,” IEEE Trans. Vis. Comput. Graph., vol. 14, no. 6, pp. 1245–1252, Nov. 2008.
[38]
M. Rosvall and C. T. Bergstrom, “Mapping change in large networks,” PLoS ONE , vol. 5, no. 1, p. e8694, 2010.
[39]
T. Chen, A. Lu, and S.-M. Hu, “Visual storylines: Semantic visualization of movie sequence,” Comput. Graph., vol. 36, no. 4, pp. 241–249, 2012.

Cited By

View all
  • (2024)SpreadLine: Visualizing Egocentric Dynamic InfluenceIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.345637331:1(1050-1060)Online publication date: 13-Sep-2024
  • (2024)Visualizing Large-Scale Spatial Time Series with GeoChronIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.332716230:1(1194-1204)Online publication date: 1-Jan-2024
  • (2023)Clover Connections: Visualising Character Dynamics in Novels for Non-ExpertsProceedings of the 35th Australian Computer-Human Interaction Conference10.1145/3638380.3638384(191-201)Online publication date: 2-Dec-2023
  • Show More Cited By

Index Terms

  1. An Efficient Framework for Generating Storyline Visualizations from Streaming Data
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image IEEE Transactions on Visualization and Computer Graphics
      IEEE Transactions on Visualization and Computer Graphics  Volume 21, Issue 6
      June 2015
      97 pages

      Publisher

      IEEE Educational Activities Department

      United States

      Publication History

      Published: 01 June 2015

      Author Tags

      1. time-varying data
      2. Storyline visualization
      3. streaming data
      4. layout algorithms

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 14 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)SpreadLine: Visualizing Egocentric Dynamic InfluenceIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.345637331:1(1050-1060)Online publication date: 13-Sep-2024
      • (2024)Visualizing Large-Scale Spatial Time Series with GeoChronIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.332716230:1(1194-1204)Online publication date: 1-Jan-2024
      • (2023)Clover Connections: Visualising Character Dynamics in Novels for Non-ExpertsProceedings of the 35th Australian Computer-Human Interaction Conference10.1145/3638380.3638384(191-201)Online publication date: 2-Dec-2023
      • (2023)EStoryline: Visualizing the Relationship with Triplet Entities and Event DiscoveryACM Transactions on Intelligent Systems and Technology10.1145/363351915:1(1-26)Online publication date: 23-Nov-2023
      • (2023)Visualizing the Spatio-Temporal Evolution of Gameplay using Storyline Visualization: A Study with League of LegendsProceedings of the ACM on Human-Computer Interaction10.1145/36110587:CHI PLAY(1002-1024)Online publication date: 4-Oct-2023
      • (2022)A Visual Analytics Approach for Hardware System Monitoring with Streaming Functional Data AnalysisIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.316534828:6(2338-2349)Online publication date: 1-Jun-2022
      • (2022)Pyramid-based Scatterplots Sampling for Progressive and Streaming Data VisualizationIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.311488028:1(593-603)Online publication date: 1-Jan-2022
      • (2022)A Visualization Approach for Monitoring Order Processing in E-Commerce WarehouseIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.311487828:1(857-867)Online publication date: 1-Jan-2022
      • (2022)Towards better pattern enhancement in temporal evolving set visualizationJournal of Visualization10.1007/s12650-022-00896-x26:3(611-629)Online publication date: 27-Nov-2022
      • (2021)Analyzing Dynamic Hypergraphs with Parallel Aggregated Ordered Hypergraph VisualizationIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2019.293319627:1(1-13)Online publication date: 1-Jan-2021
      • Show More Cited By

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media