[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Improving Shape Depiction under Arbitrary Rendering

Published: 01 August 2011 Publication History

Abstract

Based on the observation that shading conveys shape information through intensity gradients, we present a new technique called Radiance Scaling that modifies the classical shading equations to offer versatile shape depiction functionalities. It works by scaling reflected light intensities depending on both surface curvature and material characteristics. As a result, diffuse shading or highlight variations become correlated with surface feature variations, enhancing concavities and convexities. The first advantage of such an approach is that it produces satisfying results with any kind of material for direct and global illumination: we demonstrate results obtained with Phong and Ashikmin-Shirley BRDFs, Cartoon shading, sub-Lambertian materials, perfectly reflective or refractive objects. Another advantage is that there is no restriction to the choice of lighting environment: it works with a single light, area lights, and interreflections. Third, it may be adapted to enhance surface shape through the use of precomputed radiance data such as Ambient Occlusion, Prefiltered Environment Maps or Lit Spheres. Finally, our approach works in real time on modern graphics hardware making it suitable for any interactive 3D visualization.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image IEEE Transactions on Visualization and Computer Graphics
IEEE Transactions on Visualization and Computer Graphics  Volume 17, Issue 8
August 2011
158 pages

Publisher

IEEE Educational Activities Department

United States

Publication History

Published: 01 August 2011

Author Tags

  1. Expressive rendering
  2. NPR
  3. global illumination.
  4. shading
  5. shape depiction

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media