[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Optimal Oblivious Routing With Concave Objectives for Structured Networks

Published: 12 April 2023 Publication History

Abstract

Oblivious routing distributes traffic from sources to destinations following predefined routes with rules independent of traffic demands. While finding optimal oblivious routing with a concave objective is intractable for general topologies, we show that it is tractable for structured topologies often used in datacenter networks. To achieve this, we apply graph automorphism and prove the existence of the optimal automorphism-invariant solution. This result reduces the search space to targeting the optimal automorphism-invariant solution. We design an iterative algorithm to obtain such a solution by alternating between convex optimization and a linear program. The convex optimization finds an automorphism-invariant solution based on representative variables and constraints, making the problem tractable. The linear program generates adversarial demands to ensure the final result satisfies all possible demands. Since the construction of the representative variables and constraints are combinatorial problems, we design polynomial-time algorithms for the construction. We evaluate the iterative algorithm in terms of throughput performance, scalability, and generality over three potential applications. The algorithm i) improves the throughput up to 87.5&#x0025; for partially deployed FatTree and achieves up to <inline-formula> <tex-math notation="LaTeX">$2.55\times $ </tex-math></inline-formula> throughput gain for DRing over heuristic algorithms, ii) scales for three considered topologies with a thousand switches, iii) applies to a general structured topology with non-uniform link capacity and server distribution.

References

[1]
M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center network architecture,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 4, pp. 63–74, 2008. 10.1145/1402946.1402967.
[2]
A. Greenberget al., “VL2: A scalable and flexible data center network,” ACM SIGCOMM Comput. Commun. Rev., vol. 39, no. 4, pp. 51–62, 2009. 10.1145/1594977.1592576.
[3]
A. Singhet al., “Jupiter rising: A decade of clos topologies and centralized control in Google’s datacenter network,” ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, pp. 183–197, 2015. 10.1145/2829988.2787508.
[4]
A. Andreyev. Introducing Data Center Fabric, the Next-Generation Facebook Data Center Network. Accessed: Apr. 8, 2023. [Online]. Available: https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
[5]
J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber, “HyperX: Topology, routing, and packaging of efficient large-scale networks,” in Proc. Conf. High Perform. Comput. Netw., Storage Anal., New York, NY, USA, Nov. 2009, pp. 1–11. 10.1145/1654059.1654101.
[6]
J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-scalable dragonfly topology,” in Proc. Int. Symp. Comput. Archit., 2008, pp. 77–88.
[7]
M. Besta and T. Hoefler, “Slim Fly: A cost effective low-diameter network topology,” in Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal., 2014, pp. 348–359.
[8]
A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Networking data centers randomly,” in Proc. 9th USENIX Symp. Networked Syst. Design Implement. (NSDI), San Jose, CA, USA, Apr. 2012, pp. 225–238. [Online]. Available: https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/singla
[9]
A. Valadarsky, G. Shahaf, M. Dinitz, and M. Schapira, “Xpander: Towards optimal-performance datacenters,” in Proc. 12th Int. Conf. Emerg. Netw. EXperiments Technol., New York, NY, USA, Dec. 2016, pp. 205–219. 10.1145/2999572.2999580.
[10]
A. Singla, P. B. Godfrey, and A. Kolla, “High throughput data center topology design,” in Proc. 11th USENIX Symp. Networked Syst. Design Implement. (NSDI). Seattle, WA, USA, Apr. 2014, pp. 29–41. [Online]. Available: https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/singla
[11]
M. Zhang, R. N. Mysore, S. Supittayapornpong, and R. Govindan, “Understanding lifecycle management complexity of datacenter topologies,” in Proc. 16th USENIX Symp. Networked Syst. Design Implement. (NSDI), Boston, MA, USA, Feb. 2019, pp. 235–254. [Online]. Available: https://www.usenix.org/conference/nsdi19/presentation/zhang
[12]
V. Harsh, S. A. Jyothi, and P. B. Godfrey, “Spineless data centers,” in Proc. 19th ACM Workshop Hot Topics Netw., New York, NY, USA, Nov. 2020, pp. 67–73. 10.1145/3422604.3425945.
[13]
D. Thaler and C. Hopps RFC2991: Multipath Issues in Unicast and Multicast Next-Hop Selection. Accessed: Apr. 8, 2023. [Online]. Available: https://datatracker.ietf.org/doc/html/rfc2991
[14]
R. Zhang-Shen and N. McKeown, “Guaranteeing quality of service to peering traffic,” in Proc. IEEE INFOCOM 27th Conf. Comput. Commun., Apr. 2008, pp. 1472–1480.
[15]
M. Kodialam, T. V. Lakshman, J. B. Orlin, and S. Sengupta, “Preconfiguring IP-over-optical networks to handle router failures and unpredictable traffic,” IEEE J. Sel. Areas Commun., vol. 25, no. 5, pp. 934–948, Jun. 2007.
[16]
M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat, “Hedera: Dynamic flow scheduling for data center networks,” in Proc. 7th USENIX Conf. Networked Syst. Design Implement., 2010, p. 19.
[17]
A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the social network’s (datacenter) network,” ACM Comput. Commun. Rev., vol. 45, no. 4, pp. 123–137, 2015. 10.1145/2829988.2787472.
[18]
L. G. Valiant and G. J. Brebner, “Universal schemes for parallel communication,” in Proc. 13th Annu. ACM Symp. Theory Comput., New York, NY, USA, 1981, pp. 263–277. 10.1145/800076.802479.
[19]
L. G. Valiant, “A scheme for fast parallel communication,” SIAM J. Comput., vol. 11, no. 2, pp. 350–361, 1982. 10.1137/0211027.
[20]
M. Kodialam, T. Lakshman, and S. Sengupta, “Efficient and robust routing of highly variable traffic,” in Proc. 3rd Workshop Hot Topics Netw. (HotNets-III), 2004, pp. 1–6.
[21]
M. Kodialam, T. V. Lakshman, and S. Sengupta, “Maximum throughput routing of traffic in the hose model,” in Proc. IEEE INFOCOM Int. Conf. Comput. Commun., Apr. 2006, pp. 1–11.
[22]
M. Kodialam, T. V. Lakshman, J. B. Orlin, and S. Sengupta, “Oblivious routing of highly variable traffic in service overlays and IP backbones,” IEEE/ACM Trans. Netw., vol. 17, no. 2, pp. 459–472, Apr. 2009.
[23]
M. Kodialam, T. V. Lakshman, and S. Sengupta, “Traffic-oblivious routing in the hose model,” IEEE/ACM Trans. Netw., vol. 19, no. 3, pp. 774–787, Jun. 2011.
[24]
H. Räcke, “Minimizing congestion in general networks,” in Proc. 43rd Annu. IEEE Symp. Found. Comput. Sci., Nov. 2002, pp. 43–52.
[25]
H. Räcke, “Optimal hierarchical decompositions for congestion minimization in networks,” in Proc. 4th Annu. ACM Symp. Theory Comput., New York, NY, USA, 2008, pp. 255–264. 10.1145/1374376.1374415.
[26]
Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Racke, “Optimal oblivious routing in polynomial time,” in Proc. 34th Annu. ACM Symp. Theory Comput., New York, NY, USA, Jun. 2003, pp. 38–388. 10.1145/780542.780599.
[27]
D. Applegate and E. Cohen, “Making intra-domain routing robust to changing and uncertain traffic demands: Understanding fundamental tradeoffs,” in Proc. Conf. Appl., Technol., Architectures, Protocols Comput. Commun., New York, NY, USA, Aug. 2003, pp. 313–324. 10.1145/863955.863991.
[28]
D. Applegate and E. Cohen, “Making routing robust to changing traffic demands: Algorithms and evaluation,” IEEE/ACM Trans. Netw., vol. 14, no. 6, pp. 1193–1206, Dec. 2006.
[29]
R. Zhang-Shen and N. McKeown, “Designing a predictable internet backbone with valiant load-balancing,” in Proc. 13th Int. Conf. Quality Service. Berlin, Heidelberg: Springer-Verlag, 2005, pp. 178–192.
[30]
J. Fakcharoenphol, S. Rao, and K. Talwar, “A tight bound on approximating arbitrary metrics by tree metrics,” in Proc. 34th Annu. ACM Symp. Theory Comput., New York, NY, USA, Jun. 2003, pp. 448–455. 10.1145/780542.780608.
[31]
C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “DCell: A scalable and fault-tolerant network structure for data centers,” in Proc. SIGCOMM, Aug. 2008, pp. 75–86. [Online]. Available: https://www.microsoft.com/en-us/research/publication/dcell-a-scalable-and-fault-tolerant-network-structure-for-data-centers/
[32]
C. Guoet al., “BCube: A high performance, server-centric network architecture for modular data centers,” in Proc. ACM SIGCOMM, Aug. 2009, pp. 63–74. [Online]. Available: https://www.microsoft.com/en-us/research/publication/bcube-a-high-performance-server-centric-network-architecture-for-modular-data-centers/
[33]
Broadcom. Tomahawk4/BCM56990 Series. Accessed: Apr. 8, 2023. [Online]. Available: https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
[34]
S. Supittayapornpong, B. Raghavan, and R. Govindan, “Towards highly available clos-based WAN routers,” in Proc. ACM Special Interest Group Data Commun., New York, NY, USA, Aug. 2019, pp. 424–440. 10.1145/3341302.3342086.
[35]
P. Namyar, S. Supittayapornpong, M. Zhang, M. Yu, and R. Govindan, “A throughput-centric view of the performance of datacenter topologies,” in Proc. ACM SIGCOMM Conf., New York, NY, USA, Aug. 2021, pp. 349–369. 10.1145/3452296.3472913.
[36]
S. Supittayapornpong, P. Namyar, M. Zhang, M. Yu, and R. Govindan, “Optimal oblivious routing for structured networks,” in Proc. IEEE INFOCOM Conf. Comput. Commun., 2022, pp. 1988–1997.
[37]
F. Kelly, “Charging and rate control for elastic traffic,” Eur. Trans. Telecommun., vol. 8, no. 1, pp. 33–37, Jan./Feb. 1997. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.4460080106
[38]
R. Srikant and L. Ying, Communication Networks: An Optimization, Control and Stochastic Networks Perspective. Cambridge, U.K.: Cambridge Univ. Press, 2014.
[39]
J. Mo and J. Walrand, “Fair end-to-end window-based congestion control,” IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 556–567, Oct. 2000.
[40]
S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge Univ. Press, 2004.
[41]
S. Boyd and L. Vandenberghe, “Localization and cutting-plane methods,” From Stanford EE 364b Lecture Notes, Stanford Univ., Stanford, CA, USA, 2007.
[42]
B. Towles and W. Dally, “Worst-case traffic for oblivious routing functions,” IEEE Comput. Archit. Lett., vol. 1, no. 1, p. 4, Jan. 2002.
[43]
S. A. Jyothi, A. Singla, P. B. Godfrey, and A. Kolla, “Measuring and understanding throughput of network topologies,” in Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal., 2016, pp. 761–772.
[44]
B. D. McKay and A. Piperno, “Practical graph isomorphism, II,” J. Symbolic Comput., vol. 60, pp. 94–112, Jan. 2014. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0747717113001193
[45]
M. ApS. (2022). MOSEK Fusion API for Python 9.3.21. [Online]. Available: https://docs.mosek.com/9.3/pythonfusion/index.html
[46]
J. Zhouet al., “WCMP: Weighted cost multipathing for improved fairness in data centers,” in Proc. 9th Eur. Conf. Comput. Syst., New York, NY, USA, Apr. 2014, pp. 1–14. 10.1145/2592798.2592803.

Index Terms

  1. Optimal Oblivious Routing With Concave Objectives for Structured Networks
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Please enable JavaScript to view thecomments powered by Disqus.

          Information & Contributors

          Information

          Published In

          cover image IEEE/ACM Transactions on Networking
          IEEE/ACM Transactions on Networking  Volume 31, Issue 6
          Dec. 2023
          894 pages

          Publisher

          IEEE Press

          Publication History

          Published: 12 April 2023
          Published in TON Volume 31, Issue 6

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • 0
            Total Citations
          • 14
            Total Downloads
          • Downloads (Last 12 months)14
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 09 Feb 2025

          Other Metrics

          Citations

          View Options

          Login options

          Full Access

          View options

          PDF

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          Figures

          Tables

          Media

          Share

          Share

          Share this Publication link

          Share on social media