[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

What Do We Know When? Modeling Predictability of Transit Operations

Published: 01 September 2022 Publication History

Abstract

Predictions of transit delays are crucial to passengers and operators. Passengers utilize the predictions to decide on departure time, route choice, and mode choice, whereas operators decide on schedules, timetables, rolling stock allocation, and control actions. We introduce the concept of predictability of transit travel times as the study of the reduction of the predicted variability with the temporal approaching of a predicted event. We evaluate predictability on a real-life test case in Zurich, Switzerland, spanning multiple transit lines over one year of operations. The concept is shown based on predictions obtained by a state-of-the-art Bayesian network approach, where we show how predictability (in general) can be modeled as an exponential decay phenomenon. The study of predictability of transit operations leads to additional insights for control actions and system analysis compared to other complementary concepts such as punctuality or regularity, for instance, concerning bunching, identification of bottlenecks, and passenger routing.

References

[1]
O. J. Ibarra-Rojas, “Planning, operation, and control of bus transport systems: A literature review,” Transp. Res., Methodol., no. 77, pp. 38–75, 2015.
[2]
C. Brakewood and K. Watkins, “A literature review of the passenger benefits of real-time transit information,” Transp. Rev., vol. 39, no. 3, pp. 327–356, May 2019. 10.1080/01441647.2018.1472147.
[3]
T. F. Welch and A. Widita, “Big data in public transportation: A review of sources and methods,” Transp. Rev., vol. 39, no. 6, pp. 795–818, Nov. 2019. 10.1080/01441647.2019.1616849.
[4]
E. Wong and A. Khani, “Transit delay estimation using stop-level automated passenger count data,” J. Transp. Eng., A, Syst., vol. 144, no. 3, Mar. 2018, Art. no. 10.1061/JTEPBS.0000118.
[5]
M. D. Abkowitz and I. Engelstein, “Factors affecting running time on transit routes,” Transp. Res. A, Gen., vol. 17, no. 2, pp. 107–113, Mar. 1983.
[6]
K. Dueker, T. Kimpel, J. Strathman, and S. Callas, “Determinants of bus dwell time,” J. Public Transp., vol. 7, no. 1, pp. 21–40, Mar. 2004. 10.5038/2375-0901.7.1.2.
[7]
B. Barabino, M. Di Francesco, and S. Mozzoni, “An offline framework for the diagnosis of time reliability by automatic vehicle location data,” IEEE Trans. Intell. Transp. Syst., vol. 18, no. 3, pp. 583–594, Mar. 2017. 10.1109/TITS.2016.2581024.
[8]
B. Barabino and M. D. Francesco, “Diagnosis of irregularity sources by automatic vehicle location data,” IEEE Intell. Transp. Syst. Mag., vol. 13, no. 2, pp. 152–165, Summer 2019. 10.1109/MITS.2018.2889713.
[9]
Transportation—Logistics and Services—Public Passenger Transport—Service Quality Definition, Targeting and Measurement, European Committee for Standardization, Brussels, Belgium, 2002.
[10]
O. Cats and G. Loutos, “Real-time bus arrival information system: An empirical evaluation,” J. Intell. Transp. Syst., vol. 20, no. 2, pp. 138–151, 2016. 10.1080/15472450.2015.1011638.
[11]
M. Kay, T. Kola, J. R. Hullman, and S. A. Munson, “When (ISH) is my bus? User-centered visualizations of uncertainty in everyday, mobile predictive systems,” in Proc. Conf. human Factors Comput. Syst., 2016, pp. 5092–5103. 10.1145/2858036.2858558.
[12]
L.-M. Kieu, A. Bhaskar, and E. Chung, “Public transport travel-time variability definitions and monitoring,” J. Transp. Eng., vol. 141, no. 1, Jan. 2015, Art. no.
[13]
R. Choudhary, A. Khamparia, and A. K. Gahier, “Real time prediction of bus arrival time: A review,” in Proc. 2nd Int. Conf. Next Gener. Comput. Technol. (NGCT), Dehradun, India, Oct. 2016, pp. 25–29. 10.1109/NGCT.2016.7877384.
[14]
L. Lian, J. Shang, and X. Zong, “Review of research on prediction algorithms of bus headway,” in Proc. 7th Int. Conf. Inf., Cybern., Comput. Social Syst. (ICCSS), Guangzhou, China, Nov. 2020, pp. 789–792. 10.1109/ICCSS52145.2020.9336859.
[15]
J. Ma, J. Chan, G. Ristanoski, S. Rajasegarar, and C. Leckie, “Bus travel time prediction with real-time traffic information,” Transp. Res. C, Emerg. Technol., vol. 105, pp. 536–549, Aug. 2019. 10.1016/j.trc.2019.06.008.
[16]
C. Bai, Z.-R. Peng, Q.-C. Lu, and J. Sun, “Dynamic bus travel time prediction models on road with multiple bus routes,” Comput. Intell. Neurosci., vol. 2015, pp. 1–9, Jul. 2015. 10.1155/2015/432389.
[17]
N. C. Petersen, F. Rodrigues, and F. C. Pereira, “Multi-output bus travel time prediction with convolutional LSTM neural network,” Expert Syst. Appl., vol. 120, pp. 426–435, Apr. 2019. 10.1016/j.eswa.2018.11.028.
[18]
G. Chen, X. Yang, J. An, and D. Zhang, “Bus-arrival-time prediction models: Link-based and section-based,” J. Transp. Eng., vol. 138, no. 1, 10.pp. 60–66, Jan. 2012. 10.1061/(ASCE)TE.1943-5436.0000312.
[19]
M. Æelan and M. Lep, “Bus-arrival time prediction using bus network data model and time periods,” Future Gener. Comput. Syst., vol. 110, pp. 364–371, Sep. 2020. 10.1016/j.future.2018.04.077.
[20]
F. Pili, A. Olivo, and B. Barabino, “Evaluating alternative methods to estimate bus running times by archived automatic vehicle location data,” IET Intell. Transp. Syst., vol. 13, no. 3, pp. 523–530, Mar. 2019. 10.1049/iet-its.2018.5339.
[21]
O. Alam, A. Kush, A. Emami, and P. Pouladzadeh, “Predicting irregularities in arrival times for transit buses with recurrent neural networks using GPS coordinates and weather data,” J. Ambient Intell. Hum. Comput., vol. 12, no. 7, pp. 7813–7826, Jul. 2021. 10.1007/s12652-020-02507-9.
[22]
Y. Zhou, L. Yao, Y. Chen, Y. Gong, and J. Lai, “Bus arrival time calculation model based on smart card data,” Transp. Res. C, Emerg. Technol., vol. 74, pp. 81–96, Jan. 2017. 10.1016/j.trc.2016.11.014.
[23]
P. Wepulanon, A. Sumalee, and W. H. K. Lam, “A real-time bus arrival time information system using crowdsourced smartphone data: A novel framework and simulation experiments,” Transportmetrica B, Transp. Dyn., vol. 6, no. 1, pp. 34–53, Jan. 2018. 10.1080/21680566.2017.1353449.
[24]
D. Sun, H. Luo, L. Fu, W. Liu, X. Liao, and M. Zhao, “Predicting bus arrival time on the basis of global positioning system data,” Transp. Res. Rec., vol. 2034, no. 1, pp. 62–72, 2007. 10.3141/2034-08.
[25]
J. Patnaik, S. Chien, and A. Bladikas, “Estimation of bus arrival times using APC data,” J. Public Transp., vol. 7, no. 1, pp. 1–20, Mar. 2004. 10.5038/2375-0901.7.1.1.
[26]
H. Liu, H. Xu, Y. Yan, Z. Cai, T. Sun, and W. Li, “Bus arrival time prediction based on LSTM and spatial-temporal feature vector,” IEEE Access, vol. 8, pp. 11917–11929, 2020. 10.1109/ACCESS.2020.2965094.
[27]
J. Zhang, J. Gu, L. Guan, and S. Zhang, “Method of predicting bus arrival time based on MapReduce combining clustering with neural network,” in Proc. IEEE 2nd Int. Conf. Big Data Anal. (ICBDA), Beijing, China, Mar. 2017, pp. 296–302. 10.1109/ICBDA.2017.8078828.
[28]
W. Treethidtaphat, W. Pattara-Atikom, and S. Khaimook, “Bus arrival time prediction at any distance of bus route using deep neural network model,” in Proc. IEEE 20th Int. Conf. Intell. Transp. Syst. (ITSC), Yokohama, Japan, Oct. 2017, pp. 988–992. 10.1109/ITSC.2017.8317891.
[29]
J. Pang, J. Huang, Y. Du, H. Yu, Q. Huang, and B. Yin, “Learning to predict bus arrival time from heterogeneous measurements via recurrent neural network,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 9, pp. 3283–3293, Sep. 2019. 10.1109/TITS.2018.2873747.
[30]
C.-H. Chen, “An arrival time prediction method for bus system,” IEEE Internet Things J., vol. 5, no. 5, pp. 4231–4232, Oct. 2018. 10.1109/JIOT.2018.2863555.
[31]
A. A. Agafonov and A. S. Yumaganov, “Bus arrival time prediction using recurrent neural network with LSTM architecture,” Opt. Memory Neural Netw., vol. 28, no. 3, pp. 222–230, Jul. 2019. 10.3103/S1060992X19030081.
[32]
M. Yang, Y. Liu, and Z. You, “The reliability of travel time forecasting,” IEEE Trans. Intell. Transp. Syst., vol. 11, no. 1, pp. 162–171, Mar. 2010. 10.1109/TITS.2009.2037136.
[33]
A. O’Sullivan, F. C. Pereira, J. Zhao, and H. N. Koutsopoulos, “Uncertainty in bus arrival time predictions: Treating heteroscedasticity with a metamodel approach,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 11, pp. 3286–3296, Nov. 2016. 10.1109/TITS.2016.2547184.
[34]
H. Yu, Z. Wu, D. Chen, and X. Ma, “Probabilistic prediction of bus headway using relevance vector machine regression,” IEEE Trans. Intell. Transp. Syst., vol. 18, no. 7, pp. 1772–1781, Jul. 2017. 10.1109/TITS.2016.2620483.
[35]
E. Mazloumi, G. Rose, G. Currie, and S. Moridpour, “Prediction intervals to account for uncertainties in neural network predictions: Methodology and application in bus travel time prediction,” Eng. Appl. Artif. Intell., vol. 24, no. 3, pp. 534–542, 2011. 10.1016/j.engappai.2010.11.004.
[36]
M. M. Rahman, S. C. Wirasinghe, and L. Kattan, “Analysis of bus travel time distributions for varying horizons and real-time applications,” Transp. Res. C, Emerg. Technol., vol. 86, pp. 453–466, Jan. 2018. 10.1016/j.trc.2017.11.023.
[37]
C. Coffey, A. Pozdnoukhov, and F. Calabrese, “Time of arrival predictability horizons for public bus routes,” in Proc. 4th ACM SIGSPATIAL Int. Workshop Comput. Transp. Sci., Chicago, IL, USA, 2011, pp. 1–5. 10.1145/2068984.2068985.
[38]
Z.-Y. Wang, B.-H. Jin, T. Ge, and T.-F. Xue, “Detecting anomalous bus-driving behaviors from trajectories,” J. Comput. Sci. Technol., vol. 35, no. 5, pp. 1047–1063, Oct. 2020. 10.1007/s11390-020-9933-3.
[39]
B. Báchel and F. Corman, “Meaningful modeling of section bus running times by time varying mixture distributions of fixed components,” Transp. Res. Rec., J. Transp. Res. Board, vol. 2674, no. 8, pp. 626–637, May 2020. 10.1177/0361198120918576.
[40]
B. Báchel and F. Corman, “Review on statistical modeling of travel time variability for road- based public transport,” Frontiers Built Environ., vol. 6, p. 70, Jun. 2020. 10.3389/fbuil.2020.00070.
[41]
W.-C. Lee, W. Si, L.-J. Chen, and M. C. Chen, “HTTP: A new framework for bus travel time prediction based on historical trajectories,” in Proc. 20th Int. Conf. Adv. Geographic Inf. Syst., Redondo Beach, CA, USA, 2012, p. 279. 10.1145/2424321.2424357.
[42]
A. Achar, D. Bharathi, B. A. Kumar, and L. Vanajakshi, “Bus arrival time prediction: A spatial Kalman filter approach,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 3, pp. 1298–1307, Mar. 2020. 10.1109/TITS.2019.2909314.
[43]
L. Deng, Z. He, and R. Zhong, “The bus travel time prediction based on Bayesian networks,” in Proc. Int. Conf. Inf. Technol. Appl., Chengdu, China, Nov. 2013, pp. 282–285. 10.1109/ITA.2013.73.
[44]
P. He, G. Jiang, S. K. Lam, and D. Tang, “Travel-time prediction of bus journey with multiple bus trips,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 11, pp. 4192–4205, Nov. 2019. 10.1109/TITS.2018.2883342.
[45]
B. Hu, K. Xie, H. Cui, and H. Lin, “A Bayesian spatiotemporal approach for bus speed modeling,” in Proc. IEEE Intell. Transp. Syst. Conf. (ITSC), Auckland, New Zealand, Oct. 2019, pp. 497–502. 10.1109/ITSC.2019.8917523.
[46]
L. Moreira-Matias, J. Gama, J. Mendes-Moreira, and J. F. de Sousa, “An incremental probabilistic model to predict bus bunching in real-time,” in Advances in Intelligent Data Analysis XIII ( Lecture Notes in Computer Science), vol. 8819. Cham, Switzerland: Springer, 2014, pp. 227–238.
[47]
F. Corman and P. Kecman, “Stochastic prediction of train delays in real-time using Bayesian networks,” Transp. Res. C, Emerg. Technol., vol. 95, pp. 599–615, Oct. 2018. 10.1016/j.trc.2018.08.003.
[48]
B. Barabino, M. Di Francesco, and S. Mozzoni, “Time reliability measures in bus transport services from the accurate use of automatic vehicle location raw data: Accurate time reliability measures,” Qual. Rel. Eng. Int., vol. 33, no. 5, pp. 969–978, Jul. 2017. 10.1002/qre.2073.
[49]
F. McLeod, “Estimating bus passenger waiting times from incomplete bus arrivals data,” J. Oper. Res. Soc., vol. 58, no. 11, pp. 1518–1525, 2007.
[50]
G. F. Newell and R. B. Potts, “Maintaining a bus schedule,” in Proc. Austral. Road Res. Board (ARRB) Conf., vol. 2, Melbourne, VIC, Australia, 1964, pp. 1–5.
[51]
L. Moreira-Matias, O. Cats, J. Gama, J. Mendes-Moreira, and J. F. de Sousa, “An online learning approach to eliminate bus bunching in real-time,” Appl. Soft Comput., vol. 47, pp. 460–482, Oct. 2016. 10.1016/j.asoc.2016.06.031.
[52]
M. Fosgerau and A. Karlstrom, “The value of reliability,” Transp. Res. B, Methodol., vol. 44, no. 1, pp. 38–49, 2010.
[53]
M. M. Rahman, S. C. Wirasinghe, and L. Kattan, “Users’ views on current and future real-time bus information systems: Users’ views on current and future real-time bus information systems,” J. Adv. Transp., vol. 47, no. 3, pp. 336–354, Apr. 2013. 10.1002/atr.1206.
[54]
B. Barabino, M. Di Francesco, G. Maternini, and S. Mozzoni, “Offline framework for the diagnosis of transfer reliability by automatic vehicle location data,” IEEE Intell. Transp. Syst. Mag., early access, Mar. 4, 2021. 10.1109/MITS.2021.3051977.
[55]
A. Carrel, A. Halvorsen, and J. L. Walker, “Passengers’ perception of and behavioral adaptation to unreliability in public transportation,” Transp. Res. Rec., J. Transp. Res. Board, vol. 2351, no. 1, pp. 153–162, Jan. 2013. 10.3141/2351-17.
[56]
M. Schmidt, L. Kroon, A. Schöbel, and P. Bouman, “The travelers route choice problem under uncertainty: Dominance relations between strategies,” Oper. Res., vol. 65, no. 1, pp. 184–199, Feb. 2017. 10.1287/opre.2016.1564.
[57]
A. D’Ariano, L. Meng, G. Centulio, and F. Corman, “Integrated stochastic optimization approaches for tactical scheduling of trains and railway infrastructure maintenance,” Comput. Ind. Eng., vol. 127, pp. 1315–1335, Jan. 2019. 10.1016/j.cie.2017.12.010.
[58]
A. H. Sodhroet al., “Towards 5G-enabled self adaptive green and reliable communication in intelligent transportation system,” IEEE Trans. Intell. Transport. Syst., vol. 22, no. 8, pp. 5223–5231, Aug. 2020. 10.1109/TITS.2020.3019227.
[59]
L. Tang and P. Thakuriah, “Ridership effects of real-time bus information system: A case study in the city of Chicago,” Transp. Res. C, Emerg. Technol., vol. 22, pp. 146–161, Jun. 2012. 10.1016/j.trc.2012.01.001.
[60]
A. D. Marra and F. Corman, “Determining an efficient and precise choice set for public transport based on tracking data,” Transp. Res. A, Policy Pract., vol. 142, pp. 168–186, Dec. 2020. 10.1016/j.tra.2020.10.013.

Cited By

View all
  • (2023)Probabilistic Forecasting of Bus Travel Time with a Bayesian Gaussian Mixture ModelTransportation Science10.1287/trsc.2022.021457:6(1516-1535)Online publication date: 10-Oct-2023

Index Terms

  1. What Do We Know When? Modeling Predictability of Transit Operations
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Please enable JavaScript to view thecomments powered by Disqus.

          Information & Contributors

          Information

          Published In

          cover image IEEE Transactions on Intelligent Transportation Systems
          IEEE Transactions on Intelligent Transportation Systems  Volume 23, Issue 9
          Sept. 2022
          2944 pages

          Publisher

          IEEE Press

          Publication History

          Published: 01 September 2022

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 22 Dec 2024

          Other Metrics

          Citations

          Cited By

          View all
          • (2023)Probabilistic Forecasting of Bus Travel Time with a Bayesian Gaussian Mixture ModelTransportation Science10.1287/trsc.2022.021457:6(1516-1535)Online publication date: 10-Oct-2023

          View Options

          View options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media