[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Cryptanalysis of McEliece Cryptosystem Based on Algebraic Geometry Codes and Their Subcodes

Published: 01 August 2017 Publication History

Abstract

We give polynomial time attacks on the McEliece public key cryptosystem-based either on algebraic geometry (AG) codes or on small co-dimensional subcodes of AG codes. These attacks consist in the blind reconstruction either of an <italic>error correcting pair (ECP)</italic>, or an <italic>error correcting array (ECA)</italic> from the single data of an arbitrary generator matrix of a code. An ECP provides a decoding algorithm, that corrects up to <inline-formula> <tex-math notation="LaTeX">$(({d^{*}-1-g})/{2})$ </tex-math></inline-formula> errors, where <inline-formula> <tex-math notation="LaTeX">$d^{*}$ </tex-math></inline-formula> denotes the designed distance and <inline-formula> <tex-math notation="LaTeX">$g$ </tex-math></inline-formula> denotes the genus of the corresponding curve, while with an ECA the decoding algorithm corrects up to <inline-formula> <tex-math notation="LaTeX">$(({d^{*}-1})/{2})$ </tex-math></inline-formula> errors. Roughly speaking, for a public code of length <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> over <inline-formula> <tex-math notation="LaTeX">$ \mathbb {F}_{q}$ </tex-math></inline-formula>, these attacks run in <inline-formula> <tex-math notation="LaTeX">$O(n^{4}\log (n))$ </tex-math></inline-formula> operations in <inline-formula> <tex-math notation="LaTeX">$\mathbb F_{q}$ </tex-math></inline-formula> for the reconstruction of an ECP and <inline-formula> <tex-math notation="LaTeX">$O(n^{5})$ </tex-math></inline-formula> operations for the reconstruction of an ECA. A probabilistic shortcut allows to reduce the complexities respectively to <inline-formula> <tex-math notation="LaTeX">$O(n^{3+\varepsilon } \log (n))$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$O(n^{4+\varepsilon })$ </tex-math></inline-formula>. Compared with the previous known attack due to Faure and Minder, our attack is efficient on codes from curves of arbitrary genus. Furthermore, we investigate how far these methods apply to subcodes of AG codes.

References

[1]
P. W. Shor, “Algorithms for quantum computation: Discrete logarithms and factoring,” in Proc. 35th Annu. Symp. Found. Comput. Sci. (SFCS), Washington, DC, USA, 1994, pp. 124–134. [Online]. Available: https://doi.org/10.1109/SFCS.1994.365700
[2]
D. J. Bernstein, “Introduction to post-quantum cryptography,” in Post-Quantum Cryptography, D. Bernstein, J. Buchmann, and E. Dahmen, Eds. Berlin, Germany: Springer-Verlag, 2009, pp. 1–14.
[3]
R. J. McEliece, “A public-key cryptosystem based on algebraic coding theory,” Dept. Commun. Syst. Res. Section, Deep Space Netw. Progr., Tech. Rep. DSN PR 42-44, 1978, pp. 114–116.
[4]
R. Misoczki, J.-P. Tillich, N. Sendrier, and P. S. L. M. Barreto, “MDPC-McEliece: New McEliece variants from moderate density parity-check codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2013, pp. 2069–2073.
[5]
H. Niederreiter, “Knapsack-type cryptosystems and algebraic coding theory,” Problems Control Inf. Theory, vol. 15, no. 2, pp. 159–166, 1986.
[6]
T. P. Berger and P. Loidreau, “How to mask the structure of codes for a cryptographic use,” Designs, Codes Cryptograph., vol. 35, no. 1, pp. 63–79, 2005.
[7]
V. M. Sidelnikov, “A public-key cryptosystem based on binary reed-muller codes,” Discrete Math. Appl., vol. 4, no. 3, pp. 191–208, 1994.
[8]
L. Minder and A. Shokrollahi, “Cryptanalysis of the Sidelnikov cryptosystem,” in Advances in Cryptology—EUROCRYPT (Lecture Notes in Computer Science), vol. 4515. Berlin, Germany: Springer-Verlag, 2007, pp. 347–360. [Online]. Available: https://doi.org/10.1007/978-3-540-72540-4_20
[9]
V. M. Sidelnikov and S. O. Shestakov, “On insecurity of cryptosystems based on generalized Reed-Solomon codes,” Discrete Math. Appl., vol. 2, no. 4, pp. 439–444, 1992.
[10]
C. Wieschebrink, “Cryptanalysis of the Niederreiter public key scheme based on GRS subcodes,” in Post-Quantum Cryptography (Lecture Notes in Computer Science), vol. 6061. Berlin, Germany: Springer-Verlag, 2010, pp. 61–72.
[11]
H. Janwa and O. Moreno, “McEliece public key cryptosystems using algebraic-geometric codes,” Designs, Codes Cryptograph., vol. 8, no. 3, pp. 293–307, 1996.
[12]
C. Faure and L. Minder, “Cryptanalysis of the McEliece cryptosystem over hyperelliptic codes,” in Proc. Int Workshop Algebraic Combinat. Coding Theory, 2008, pp. 99–107.
[13]
N. Sendrier, “On the structure of a randomly permuted concatenated code,” in Proc. EUROCODE, 1994, pp. 169–173.
[14]
I. Márquez-Corbella, E. Martínez-Moro, R. Pellikaan, and D. Ruano, “Computational aspects of retrieving a representation of an algebraic geometry code,” J. Symbolic Comput., vol. 64, pp. 67–87, Aug. 2014.
[15]
A. Couvreur, P. Gaborit, V. Gauthier-Umaña, A. Otmani, and J.-P. Tillich, “Distinguisher-based attacks on public-key cryptosystems using Reed–Solomon codes,” Designs, Codes Cryptograph., vol. 73, no. 2, pp. 641–666, 2014. [Online]. Available: https://doi.org/10.1007/s10623-014-9967-z
[16]
A. Couvreur, A. Otmani, and J.-P. Tillich, “Polynomial time attack on wild McEliece over quadratic extensions,” in Advances in Cryptology—EUROCRYPT (Lecture Notes in Computer Science), vol. 8441. Heidelberg, Germany: Springer-Verlag, 2014, pp. 17–39. [Online]. Available: https://doi.org/10.1007/978-3-642-55220-5_2
[17]
A. Couvreur, A. Otmani, J. Tillich, and V. Gauthier-Umaña, “A polynomial-time attack on the BBCRS scheme,” in Public-Key Cryptography—PKC (Lecture Notes in Computer Science), vol. 9020, J. Katz, Ed. Berlin, Germany: Springer-Verlag, 2015, pp. 175–193.
[18]
A. Couvreur, O. Ayoub, and J.-P. Tillich, “Polynomial time attack on wild McEliece over quadratic extensions,” IEEE Trans. Inf. Theory, vol. 63, no. 1, pp. 404–427, Jan. 2017.
[19]
R. Pellikaan. (1988). On Decoding Linear Codes by Error Correcting Pairs. Technical University Eindhoven. [Online]. Available: http://www.win.tue.nl/~ruudp/paper/15-ecp-preprint.pdf
[20]
R. Pellikaan, “On the existence of error-correcting pairs,” Statist. Planning Inference, vol. 51, no. 2, pp. 229–242, 1996.
[21]
C. Kirfel and R. Pellikaan, “The minimum distance of codes in an array coming from telescopic semigroups,” IEEE Trans. Inf. Theory, vol. 41, no. 6, pp. 1720–1732, Nov. 1995.
[22]
O. Geil, R. Matsumoto, and D. Ruano, “Feng–Rao decoding of primary codes,” Finite Fields Appl., vol. 23, pp. 35–52, Sep. 2013.
[23]
K. Khuri-Makdisi, “Linear algebra algorithms for divisors on an algebraic curve,” Math. Comp., vol. 73, no. 245, pp. 333–357, 2004. [Online]. Available: https://doi.org/10.1090/S0025-5718-03-01567-9
[24]
A. Couvreur, I. Márquez-Corbella, and R. Pellikaan, “A polynomial time attack against algebraic geometry code based public key cryptosystems,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2014, pp. 1446–1450.
[25]
A. Couvreur, I. Márquez-Corbella, and R. Pellikaan, “Cryptanalysis of public-key cryptosystems that use subcodes of algebraic geometry codes,” in Proc. 4th Int. Castle Meet. Coding Theory Appl., vol. 3. 2015, pp. 133–140.
[26]
H. Stichtenoth, “Algebraic function fields and codes,” in Graduate Texts in Mathematics, vol. 254, 2nd ed. Berlin, Germany: Springer-Verlag, 2009.
[27]
S. Vlăduţ, D. Nogin, and M. Tsfasman, “Algebraic geometric codes: Basic notions,” in Mathematical Surveys and Monographs, vol. 139. Providence, RI, USA: AMS, 2007.
[28]
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, 5th ed. Amsterdam, The Netherlands: North-Holland, 1986.
[29]
H. Randriambololona, “On products and powers of linear codes under componentwise multiplication,” in Algorithmic Arithmetic, Geometry, and Coding Theory, vol. 637. Providence, RI, USA: AMS, 2015, pp. 3–78. [Online]. Available: https://doi.org/10.1090/conm/637/12749
[30]
D. Mumford, “Varieties defined by quadratic equations,” in Questions on Algebraic Varieties (C.I.M.E. Summer Schools). Rome, Italy: Edizioni Cremonese, 1970, pp. 29–100.
[31]
I. Márquez-Corbella, E. Martínez-Moro, and R. Pellikaan, “The non-gap sequence of a subcode of a generalized Reed–Solomon code,” Designs, Codes Cryptograph., vol. 66, nos. 1–3, pp. 317–333, 2013. [Online]. Available: https://doi.org/10.1007/s10623-012-9694-2
[32]
R. Pellikaan, “On decoding by error location and dependent sets of error positions,” Discrete Math., vols. 106–107, pp. 369–381, Sep. 1992.
[33]
R. Kötter, “A unified description of an error locating procedure for linear codes,” in Proc. Int Workshop Algebraic Combinat. Coding Theory, Voneshta Voda, Bulgaria, 1992, pp. 113–117.
[34]
I. Márquez-Corbella, E. Martínez-Moro, and R. Pellikaan, “On the unique representation of very strong algebraic geometry codes,” Designs, Codes Cryptograph., vol. 70, no. 1, pp. 215–230, 2014. [Online]. Available: https://doi.org/10.1007/s10623-012-9758-3
[35]
G.-G. Feng and T. R. N. Rao, “Decoding algebraic-geometric codes up to the designed minimum distance,” IEEE Trans. Inf. Theory, vol. 39, no. 1, pp. 37–45, Jan. 1993.
[36]
G.-L. Feng and K. Tzeng, “A new procedure for decoding cyclic and BCH codes up to actual minimum distance,” IEEE Trans. Inf. Theory, vol. 40, no. 5, pp. 1364–1374, Sep. 1994.
[37]
I. M. Duursma, “Majority coset decoding,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 1067–1071, May 1993.
[38]
I. M. Duursma, “Decoding codes from curves and cyclic codes,” Ph.D. dissertation, Dept. Math. Comput. Sci., Eindhoven Univ. Technol., Eindhoven, The Netherlands, 1993.
[39]
R. Pellikaan, “On the efficient decoding of algebraic-geometric codes,” in Eurocode (Courses and Lectures), vol. 339. Vienna, Austria: Springer, 1993, pp. 231–253.
[40]
N. Lausten, “Design og afkodning af algebraiske geometrikoder,” Dept. Math. M.S. thesis, Techn. Univ. Denmark, Lyngby, Denmark, 1993.
[41]
K. Khuri-Makdisi, “Asymptotically fast group operations on Jacobians of general curves,” Math. Comp., vol. 76, no. 260, pp. 2213–2239, 2007. [Online]. Available: https://doi.org/10.1090/S0025-5718-07-01989-8
[42]
W. Bosma, J. Cannon, and C. Playoust, “The Magma algebra system. I. The user language,” J. Symbolic Comput., vol. 24, no. 3, pp. 235–265, 1997. [Online]. Available: https://doi.org/10.1006/JSCo.1996.0125
[43]
C. Peters, “Information-set decoding for linear codes over $F_{q}$ ,” in Post-Quantum Cryptography (Lecture Notes in Computer Science), vol. 6061, N. Sendrier, Ed. Berlin, Germany: Springer-Verlag, 2010, pp. 81–94.
[44]
G. L. Katsman and M. A. Tsfasman, “A remark on algebraic geometric codes,” in Representation Theory, Group Rings, and Coding Theory, vol. 93. Providence, RI, USA: AMS, 1989, pp. 197–199.
[45]
M. Wirtz, “On the parameters of Goppa codes,” IEEE Trans. Inf. Theory, vol. 34, no. 5, pp. 1341–1343, Sep. 1988. [Online]. Available: https://doi.org/10.1109/18.21264
[46]
H. Stichtenoth, “On the dimension of subfield subcodes,” IEEE Trans. Inf. Theory, vol. 36, no. 1, pp. 90–93, Jan. 1990.
[47]
A. Couvreur, “Codes and the cartier operator,” Proc. Amer. Math. Soc., vol. 142, no. 6, pp. 1983–1996, 2014.

Cited By

View all
  • (2024)General Framework for Linear Secure Distributed Matrix Multiplication With Byzantine ServersIEEE Transactions on Information Theory10.1109/TIT.2024.335935570:6(3864-3877)Online publication date: 29-Jan-2024
  • (2023)Polynomial Time Key-Recovery Attack on High Rate Random Alternant CodesIEEE Transactions on Information Theory10.1109/TIT.2023.333459270:6(4492-4511)Online publication date: 28-Nov-2023
  • (2023)Goppa–Like AG Codes From Ca,b Curves and Their Behavior Under Squaring Their DualIEEE Transactions on Information Theory10.1109/TIT.2023.333409670:5(3330-3344)Online publication date: 16-Nov-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image IEEE Transactions on Information Theory
IEEE Transactions on Information Theory  Volume 63, Issue 8
Aug. 2017
718 pages

Publisher

IEEE Press

Publication History

Published: 01 August 2017

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 18 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)General Framework for Linear Secure Distributed Matrix Multiplication With Byzantine ServersIEEE Transactions on Information Theory10.1109/TIT.2024.335935570:6(3864-3877)Online publication date: 29-Jan-2024
  • (2023)Polynomial Time Key-Recovery Attack on High Rate Random Alternant CodesIEEE Transactions on Information Theory10.1109/TIT.2023.333459270:6(4492-4511)Online publication date: 28-Nov-2023
  • (2023)Goppa–Like AG Codes From Ca,b Curves and Their Behavior Under Squaring Their DualIEEE Transactions on Information Theory10.1109/TIT.2023.333409670:5(3330-3344)Online publication date: 16-Nov-2023
  • (2023)An Extension of Overbeck’s Attack with an Application to Cryptanalysis of Twisted Gabidulin-Based SchemesPost-Quantum Cryptography10.1007/978-3-031-40003-2_1(3-37)Online publication date: 16-Aug-2023
  • (2022)On the Security of Subspace Subcodes of Reed–Solomon Codes for Public Key EncryptionIEEE Transactions on Information Theory10.1109/TIT.2021.312044068:1(632-648)Online publication date: 1-Jan-2022
  • (2020)Squares of matrix-product codesFinite Fields and Their Applications10.1016/j.ffa.2019.10160662:COnline publication date: 1-Feb-2020
  • (2020)Power error locating pairsDesigns, Codes and Cryptography10.1007/s10623-020-00774-388:8(1561-1593)Online publication date: 8-Jul-2020
  • (2020)Cryptanalysis of a system based on twisted Reed–Solomon codesDesigns, Codes and Cryptography10.1007/s10623-020-00747-688:7(1285-1300)Online publication date: 11-Mar-2020
  • (2019)Theory of supports for linear codes endowed with the sum-rank metricDesigns, Codes and Cryptography10.1007/s10623-019-00619-887:10(2295-2320)Online publication date: 1-Oct-2019
  • (2019)ECC: Error Correcting Code and Elliptic Curve Based CryptosystemCyberspace Safety and Security10.1007/978-3-030-37337-5_17(214-229)Online publication date: 1-Dec-2019

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media