[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Contour-Aware Loss: Boundary-Aware Learning for Salient Object Segmentation

Published: 01 January 2021 Publication History

Abstract

We present a learning model that makes full use of boundary information for salient object segmentation. Specifically, we come up with a novel loss function, i.e., Contour Loss, which leverages object contours to guide models to perceive salient object boundaries. Such a boundary-aware network can learn boundary-wise distinctions between salient objects and background, hence effectively facilitating the salient object segmentation. Yet the Contour Loss emphasizes the boundaries to capture the contextual details in the local range. We further propose the hierarchical global attention module (HGAM), which forces the model hierarchically to attend to global contexts, thus captures the global visual saliency. Comprehensive experiments on six benchmark datasets show that our method achieves superior performance over state-of-the-art ones. Moreover, our model has a real-time speed of 26 fps on a TITAN X GPU.

References

[1]
L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for rapid scene analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 11, pp. 1254–1259, Nov. 1998.
[2]
M.-M. Cheng, N. J. Mitra, X. Huang, P. H. S. Torr, and S.-M. Hu, “Global contrast based salient region detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 3, pp. 569–582, Mar. 2015.
[3]
C. Yang, L. Zhang, H. Lu, X. Ruan, and M.-H. Yang, “Saliency detection via graph-based manifold ranking,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2013, pp. 3166–3173.
[4]
J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 3431–3440.
[5]
O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmentation,” in Proc. Int. Conf. Med. Image Comput. Comput.-Assisted Intervent. (MICCAI), 2015, pp. 234–241.
[6]
T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature pyramid networks for object detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 2117–2125.
[7]
Z. Luo, A. Mishra, A. Achkar, J. Eichel, S. Li, and P.-M. Jodoin, “Non-local deep features for salient object detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 6609–6617.
[8]
X. Li, F. Yang, H. Cheng, W. Liu, and D. Shen, “Contour knowledge transfer for salient object detection,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 370–385.
[9]
N. Liu, J. Han, and M.-H. Yang, “PiCANet: Learning pixel-wise contextual attention for saliency detection,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 3089–3098.
[10]
T. Wanget al., “Detect globally, refine locally: A novel approach to saliency detection,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 3127–3135.
[11]
X. Zhang, T. Wang, J. Qi, H. Lu, and G. Wang, “Progressive attention guided recurrent network for salient object detection,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 714–722.
[12]
T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2980–2988.
[13]
K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in Proc. Int. Conf. Learn. Represent., 2015, pp. 1–14.
[14]
A. Borji, M.-M. Cheng, Q. Hou, H. Jiang, and J. Li, “Salient object detection: A survey,” Comput. Vis. Media, vol. 5, pp. 117–150, Jun. 2019.
[15]
A. Borji, M.-M. Cheng, H. Jiang, and J. Li, “Salient object detection: A benchmark,” IEEE Trans. Image Process., vol. 24, no. 12, pp. 5706–5722, Dec. 2015.
[16]
W. Wang, Q. Lai, H. Fu, J. Shen, H. Ling, and R. Yang, “Salient object detection in the deep learning era: An in-depth survey,” 2019, arXiv:1904.09146. [Online]. Available: http://arxiv.org/abs/1904.09146
[17]
D. A. Klein and S. Frintrop, “Center-surround divergence of feature statistics for salient object detection,” in Proc. Int. Conf. Comput. Vis., Nov. 2011, pp. 2214–2219.
[18]
Z. Jiang and L. S. Davis, “Submodular salient region detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2013, pp. 2043–2050.
[19]
Q. Yan, L. Xu, J. Shi, and J. Jia, “Hierarchical saliency detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2013, pp. 1155–1162.
[20]
H. Jiang, J. Wang, Z. Yuan, Y. Wu, N. Zheng, and S. Li, “Salient object detection: A discriminative regional feature integration approach,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2013, pp. 2083–2090.
[21]
Q. Hou, M.-M. Cheng, X. Hu, A. Borji, Z. Tu, and P. Torr, “Deeply supervised salient object detection with short connections,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 3203–3212.
[22]
F. Yang, X. Li, H. Cheng, Y. Guo, L. Chen, and J. Li, “Multi-scale bidirectional FCN for object skeleton extraction,” in Proc. 32nd AAAI Conf. Artif. Intell. (AAAI), 2018, pp. 1–8.
[23]
J. Kuen, Z. Wang, and G. Wang, “Recurrent attentional networks for saliency detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 3668–3677.
[24]
N. Liu and J. Han, “DHSNet: Deep hierarchical saliency network for salient object detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 678–686.
[25]
L. Wang, L. Wang, H. Lu, P. Zhang, and X. Ruan, “Saliency detection with recurrent fully convolutional networks,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2016, pp. 825–841.
[26]
Y. Tang, X. Wu, and W. Bu, “Deeply-supervised recurrent convolutional neural network for saliency detection,” in Proc. ACM Multimedia Conf., 2016, pp. 397–401.
[27]
P. Zhang, D. Wang, H. Lu, H. Wang, and X. Ruan, “Amulet: Aggregating multi-level convolutional features for salient object detection,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 202–211.
[28]
X. Li, F. Yang, H. Cheng, J. Chen, Y. Guo, and L. Chen, “Multi-scale cascade network for salient object detection,” in Proc. ACM Multimedia Conf. (MM), 2017, pp. 439–447.
[29]
L. Zhang, J. Dai, H. Lu, Y. He, and G. Wang, “A bi-directional message passing model for salient object detection,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 1741–1750.
[30]
Z. Chen, C. Guo, J. Lai, and X. Xie, “Motion-appearance interactive encoding for object segmentation in unconstrained videos,” IEEE Trans. Circuits Syst. Video Technol., vol. 30, no. 6, pp. 1613–1624, Jun. 2020.
[31]
X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 7794–7803.
[32]
S. Chen, X. Tan, B. Wang, and X. Hu, “Reverse attention for salient object detection,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 236–252.
[33]
L. Wang, H. Lu, X. Ruan, and M.-H. Yang, “Deep networks for saliency detection via local estimation and global search,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 3183–3192.
[34]
R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, “SLIC superpixels compared to state-of-the-art superpixel methods,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 11, pp. 2274–2282, Nov. 2012.
[35]
P. Hu, B. Shuai, J. Liu, and G. Wang, “Deep level sets for salient object detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 2300–2309.
[36]
X. Liet al., “DeepSaliency: Multi-task deep neural network model for salient object detection,” IEEE Trans. Image Process., vol. 25, no. 8, pp. 3919–3930, Aug. 2016.
[37]
G. Li and Y. Yu, “Visual saliency based on multiscale deep features,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 5455–5463.
[38]
G. Lee, Y.-W. Tai, and J. Kim, “Deep saliency with encoded low level distance map and high level features,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 660–668.
[39]
Y. Tang and X. Wu, “Saliency detection via combining region-level and pixel-level predictions with CNNs,” in Eur. Conf. Comput. Vis. (ECCV), 2016, pp. 809–825.
[40]
G. Li and Y. Yu, “Deep contrast learning for salient object detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 478–487.
[41]
A. Manno-Kovacs, “Direction selective contour detection for salient objects,” IEEE Trans. Circuits Syst. Video Technol., vol. 29, no. 2, pp. 375–389, Feb. 2019.
[42]
H. Ding, X. Jiang, A. Q. Liu, N. M. Thalmann, and G. Wang, “Boundary-aware feature propagation for scene segmentation,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 6819–6829.
[43]
M. Feng, H. Lu, and E. Ding, “Attentive feedback network for boundary-aware salient object detection,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 1623–1632.
[44]
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2009, pp. 248–255.
[45]
J.-F. Rivest, P. Soille, and S. Beucher, “Morphological gradients,” J. Electron. Imag., vol. 2, no. 4, pp. 326–337, 1993.
[46]
A. N. Evans and X. U. Liu, “A morphological gradient approach to color edge detection,” IEEE Trans. Image Process., vol. 15, no. 6, pp. 1454–1463, Jun. 2006.
[47]
H. Law and J. Deng, “Cornernet: Detecting objects as paired keypoints,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 734–750.
[48]
Y. Li, X. Hou, C. Koch, J. M. Rehg, and A. L. Yuille, “The secrets of salient object segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 280–287.
[49]
L. Wanget al., “Learning to detect salient objects with image-level supervision,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 136–145.
[50]
V. Movahedi and J. H. Elder, “Design and perceptual validation of performance measures for salient object segmentation,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., Jun. 2010, pp. 49–56.
[51]
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 770–778.
[52]
T. Wang, A. Borji, L. Zhang, P. Zhang, and H. Lu, “A stagewise refinement model for detecting salient objects in images,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 4019–4028.
[53]
P. Zhang, D. Wang, H. Lu, H. Wang, and B. Yin, “Learning uncertain convolutional features for accurate saliency detection,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 212–221.
[54]
S. Woo, J. Park, J.-Y. Lee, and I. So Kweon, “CBAM: Convolutional block attention module,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 3–19.
[55]
A. Paszkeet al., “Automatic differentiation in PyTorch,” in Proc. Neural Inf. Process. Syst. (NIPS), 2017, pp. 1–4.
[56]
R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk, “Frequency-tuned salient region detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2009, pp. 1597–1604.
[57]
P. Krähenbühl and V. Koltun, “Efficient inference in fully connected CRFs with Gaussian edge potentials,” in Proc. Neural Inf. Process. Syst. (NIPS), 2011, pp. 109–117.
[58]
Z. Wu, L. Su, and Q. Huang, “Cascaded partial decoder for fast and accurate salient object detection,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 3907–3916.
[59]
S. Xie and Z. Tu, “Holistically-nested edge detection,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 1395–1403.
[60]
F. Visin, K. Kastner, K. Cho, M. Matteucci, A. Courville, and Y. Bengio, “ReNet: A recurrent neural network based alternative to convolutional networks,” 2015, arXiv:1505.00393. [Online]. Available: http://arxiv.org/abs/1505.00393

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image IEEE Transactions on Image Processing
IEEE Transactions on Image Processing  Volume 30, Issue
2021
5053 pages

Publisher

IEEE Press

Publication History

Published: 01 January 2021

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media