[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Quantum Error Correction Codes in Consumer Technology: Modeling and Analysis

Published: 01 November 2024 Publication History

Abstract

Quantum technology has the transformative potential to impact various industries, including consumer technology, by applying quantum systems. However, the quantum systems are inherently sensitive to errors and decoherence, necessitating the development of quantum error correction (QEC) codes to mitigate these issues and preserve the integrity of quantum information while ensuring the reliability of quantum operations. Motivated by this, the main objective of this paper is to provide an analysis of the QEC code, emphasizing its key features and potential benefits. The analysis includes a comprehensive review of current QEC codes, a detailed theoretical examination of prevailing methodologies, and an exploration of quantum gate circuits to evaluate code feasibility and practical implementation. The findings demonstrate that integrating QEC codes enhances quantum state fidelity and error reduction, ensuring the reliability and stability of quantum devices for more accurate and dependable quantum operations. This analysis enhances the understanding of the potential of QEC codes to improve the performance and feasibility of quantum devices in consumer applications.

References

[1]
R. Sotelo, “Quantum in consumer technology,” IEEE Consum. Electron. Mag., vol. 12, no. 5, pp. 4–7, Sep. 2023.
[2]
S. K. Singh, A. E. Azzaoui, M. M. Salim, and J. H. Park, “Quantum communication technology for future ICT—Review,” J. Inf. Process. Syst., vol. 16, no. 6, pp. 1459–1478, 2020.
[3]
M. Coccia, S. Roshani, and M. Mosleh, “Evolution of quantum computing: Theoretical and innovation management implications for emerging quantum industry,” IEEE Trans. Eng. Manag., vol. 71, pp. 2270–2280, 2024.
[4]
J. Bozhko, Y. Hanna, R. Harrilal-Parchment, S. Tonyali, and K. Akkaya, “Performance evaluation of quantum-resistant TLS for consumer IoT devices,” in Proc. IEEE 20th Consum. Commun. Netw. Conf. (CCNC), 2023, pp. 230–235.
[5]
S. T. C. Baek, T. Otsuka, and B. S. Choi, “Density matrix simulation of quantum error correction codes for near-term quantum devices,” Quantum Sci. Technol., vol. 5, no. 1, 2019, Art. no.
[6]
D. Javeed, M. S. Saeed, I. Ahmad, P. Kumar, A. Jolfaei, and M. Tahir, “An intelligent intrusion detection system for smart consumer electronics network,” IEEE Trans. Consum. Electron., vol. 69, no. 4, pp. 906–913, Nov. 2023.
[7]
S. He, C. Du, and M. S. Hossain, “6G-enabled consumer electronics device intrusion detection with federated meta-learning and digital twins in a meta-verse environment,” IEEE Trans. Consum. Electron., vol. 70, no. 1, pp. 3111–3119, Feb. 2024.
[8]
V. S. Baghel and S. Prakash, “Generation of secure fingerprint template using DFT for consumer electronics devices,” IEEE Trans. Consum. Electron., vol. 69, no. 2, pp. 118–127, May 2023.
[9]
K. Doulani, A. Rajput, A. Hazra, M. Adhikari, and A. K. Singh, “Explainable AI for communicable disease prediction and sustainable living: Implications for consumer electronics,” IEEE Trans. Consum. Electron., vol. 70, no. 1, pp. 2460–2467, Feb. 2024.
[10]
C. K. Wu, C.-T. Cheng, Y. Uwate, G. Chen, S. Mumtaz, and K. F. Tsang, “State-of-the-art and research opportunities for next-generation consumer electronics,” IEEE Trans. Consum. Electron., vol. 69, no. 4, pp. 937–948, Nov. 2023.
[11]
R. Li, Z. Wang, L. Fang, C. Peng, W. Wang, and H. Xiong, “Efficient blockchain-assisted distributed identity-based signature scheme for integrating consumer electronics in metaverse,” IEEE Trans. Consum. Electron., vol. 70, no. 1, pp. 3770–3780, Feb. 2024.
[12]
J. Jeon, B. Jeong, and Y.-S. Jeong, “Intelligent resource scaling for container-based digital twin simulation of consumer electronics,” IEEE Trans. Consum. Electron., vol. 70, no. 1, pp. 3131–3140, Feb. 2024.
[13]
Q. Wang, R. Y. K. Lau, and X. Mao, “Blockchain-enabled smart contracts for enhancing distributor-to-consumer transactions,” IEEE Consum. Electron. Mag., vol. 8, no. 6, pp. 22–28, Nov. 2019.
[14]
S. Anbalagan, G. Raja, S. Gurumoorthy, R. Deepak Suresh, and K. Ayyakannu, “Blockchain assisted hybrid intrusion detection system in autonomous vehicles for industry 5.0,” IEEE Trans. Consum. Electron., vol. 69, no. 4, pp. 881–889, Nov. 2023.
[15]
B. B. Gupta, A. Gaurav, and V. Arya, “Secure and privacy-preserving Decentralized federated learning for personalized recommendations in consumer electronics using blockchain and homomorphic encryption,” IEEE Trans. Consum. Electron., vol. 70, no. 1, pp. 2546–2556, Feb. 2024.
[16]
M. Sayad Haghighi, F. Farivar, A. Jolfaei, A. Bayrami Asl, and W. Zhou, “Cyber attacks via consumer electronics: Studying the threat of covert malware in smart and autonomous vehicles,” IEEE Trans. Consum. Electron., vol. 69, no. 1, pp. 825–832, Nov. 2023.
[17]
J. Wu, J. Zhang, M. Bilal, F. Han, N. Victor, and X. Xu, “A federated deep learning framework for privacy-preserving consumer electronics recommendations,” IEEE Trans. Consum. Electron., vol. 70, no. 1, pp. 2628–2638, Feb. 2024.
[18]
Z. Yang, M. Zolanvari, and R. Jain, “A survey of important issues in quantum computing and communications,” IEEE Commun. Surveys Tuts., vol. 25, no. 2, pp. 1059–1094, 2nd Quart., 2023.
[19]
R. Ur Rasool, H. F. Ahmad, W. Rafique, A. Qayyum, J. Qadir, and Z. Anwar, “Quantum computing for healthcare: A review,” Future Internet, vol. 15, no. 3, p. 94, 2023.
[20]
R. Orús, S. Mugel, and E. Lizaso, “Quantum computing for finance: Overview and prospects,” Rev. Phys., vol. 4, Nov. 2019, Art. no.
[21]
M. Schlosshauer, “Quantum decoherence,” Phys. Rep., vol. 831, pp. 1–57, Oct. 2019.
[22]
C. Li, T. Li, Y.-X. Liu, and P. Cappellaro, “Effective routing design for remote entanglement generation on quantum networks,” Npj Quantum Inf., vol. 7, no. 1, p. 10, 2021.
[23]
D. Ribezzo et al., “Deploying an inter-European quantum network,” Adv. Quantum Technol., vol. 6, no. 2, 2023, Art. no.
[24]
P. K. Roy, “Quantum logic gates,” 2020. [Online]. Available: https://www.researchgate.net/publication/343833536_Quantum_Logic_Gates
[25]
D. Quan, C. Liu, X. Lv, and C. Pei, “Implementation of fault-tolerant encoding circuit based on stabilizer implementation and 'flag' bits in steane code,” Entropy, vol. 24, no. 8, p. 1107, 2022.
[26]
W. Almuhtadi and F. Lamberti, “Establishing the technical activities and technical committees of IEEE consumer technology society,” IEEE Consum. Electron. Mag., vol. 11, no. 4, pp. 4–6, Jul. 2022.
[27]
N. Delfosse, B. W. Reichardt, and K. M. Svore, “Beyond single-shot fault-tolerant quantum error correction,” IEEE Trans. Inf. Theory, vol. 68, no. 1, pp. 287–301, Jan. 2022.
[28]
Z. Babar, P. Botsinis, D. Alanis, S. X. Ng, and L. Hanzo, “The road from classical to quantum codes: A hashing bound approaching design procedure,” IEEE Access, vol. 3, pp. 146–176, 2015.
[29]
R. Kukulski, U. Pawela, and Z. Puchała, “On the probabilistic quantum error correction,” IEEE Trans. Inf. Theory, vol. 69, no. 7, pp. 4620–4640, Jul. 2023.
[30]
H.-H. Chang, “An introduction to error-correcting codes: From classical to quantum,” 2006, arXiv:quant-ph/0602157.
[31]
R. B. Griffiths, “Hilbert space quantum mechanics is noncontextual,” Stud. Hist. Philos. Sci. Part B, Stud. Hist. Philos. Modern Phys., vol. 44, no. 3, pp. 174–181, 2013.
[32]
G. Casati, D. L. Shepelyansky, and E. P. Zoller, Quantum Computers, Algorithms and Chaos, vol. 162. Amsterdam, The Netherlands: IOS Press, 2006, pp. 1–32.
[33]
O. O. Khalifa, N. A. bt Sharif, R. A. Saeed, S. Abdel-Khalek, A. N. Alharbi, and A. A. Alkathiri, “Digital system design for quantum error correction codes,” Contrast Media Mol. Imag., vol. 2021, p. 8, Dec. 2021. 10.1155/2021/1101911.
[34]
S. J. Devitt, W. J. Munro, and K. Nemoto, “Quantum error correction for beginners,” Rep. Prog. Phys., vol. 76, no. 7, 2013, Art. no.
[35]
T. A. Brun, “Quantum error correction,” 2019, arXiv:1910.03672.
[36]
R. Matsumoto and M. Hagiwara, “A survey of quantum error correction,” IEICE Trans. Fundam. Electron., Commun. Comput. Sci., vol. 104, no. 12, pp. 1654–1664, 2021.
[37]
P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Phys. Rev. A, vol. 52, no. 4, 1995, Art. no.
[38]
R. S. Andrist, “Understanding topological quantum error correction codes using classical spin models,” Ph.D. dissertation, Dept. Phys., ETH Zurich, Zürich, Switzerland, 2012.
[39]
R. Andrist, “Suppressing quantum errors by scaling a surface code logical qubit,” Nature, vol. 614, pp. 676–681, Feb. 2023.
[40]
A. Javadi-Abhari et al., “Optimized surface code communication in superconducting quantum computers,” in Proc. 50th Annu. IEEE/ACM Int. Symp. Microarchit., 2017, pp. 692–705.
[41]
J. Napp and J. Preskill, “Optimal Bacon-Shor codes,” Quant. Inf. Comput., vol. 13, pp. 490–510, May 2013.
[42]
A. B. Aloshious and P. K. Sarvepalli, “Projecting three-dimensional color codes onto three-dimensional toric codes,” Phys. Rev. A, vol. 98, Jul. 2018, Art. no.
[43]
A. Grospellier and A. Krishna, “Numerical study of hypergraph product codes,” 2018, arXiv:1810.03681.
[44]
A. O. Quintavalle, “Hypergraph product codes: A bridge to scalable quantum computers,” M.S. thesis, Dept. Phys. Astron., Univ. Sheffield, Sheffield, U.K., 2022.
[45]
S. Bravyi and M. B. Hastings, “Homological product codes,” 2014, arXiv:1311.0885.
[46]
Z. Himwich, “Applications of graph theory and homological algebra to quantum LDPC codes.,” 2022. [Online]. Available: https://henryyuen.net/spring2022/projects/qldpc.pdf
[47]
R. Chao and B. W. Reichardt, “Flag fault-tolerant error correction for any stabilizer code,” PRX Quantum, vol. 1, no. 1, 2020, Art. no.
[48]
F. Battistel et al., “Real-time decoding for fault-tolerant quantum computing: Progress, challenges and outlook,” Nano Futures, vol. 7, no. 3, 2023, Art. no.
[49]
M. Wang et al., “Improving the capacity of quantum dense coding and the fidelity of quantum teleportation by weak measurement and measurement reversal,” Entropy, vol. 25, no. 5, p. 736, 2023.
[50]
P. Aliferis, “Level reduction and the quantum threshold theorem,” 2011, arXiv:quant-ph/0703230.
[51]
S. Veroni, M. Müller, and G. Giudice, “Optimized measurement-free and fault-tolerant quantum error correction for neutral atoms,” 2024, arXiv:2404.11663.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image IEEE Transactions on Consumer Electronics
IEEE Transactions on Consumer Electronics  Volume 70, Issue 4
Nov. 2024
1165 pages

Publisher

IEEE Press

Publication History

Published: 01 November 2024

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 30 Jan 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media