Quantum Error Correction Codes in Consumer Technology: Modeling and Analysis
Pages 7102 - 7111
Abstract
Quantum technology has the transformative potential to impact various industries, including consumer technology, by applying quantum systems. However, the quantum systems are inherently sensitive to errors and decoherence, necessitating the development of quantum error correction (QEC) codes to mitigate these issues and preserve the integrity of quantum information while ensuring the reliability of quantum operations. Motivated by this, the main objective of this paper is to provide an analysis of the QEC code, emphasizing its key features and potential benefits. The analysis includes a comprehensive review of current QEC codes, a detailed theoretical examination of prevailing methodologies, and an exploration of quantum gate circuits to evaluate code feasibility and practical implementation. The findings demonstrate that integrating QEC codes enhances quantum state fidelity and error reduction, ensuring the reliability and stability of quantum devices for more accurate and dependable quantum operations. This analysis enhances the understanding of the potential of QEC codes to improve the performance and feasibility of quantum devices in consumer applications.
References
[1]
R. Sotelo, “Quantum in consumer technology,” IEEE Consum. Electron. Mag., vol. 12, no. 5, pp. 4–7, Sep. 2023.
[2]
S. K. Singh, A. E. Azzaoui, M. M. Salim, and J. H. Park, “Quantum communication technology for future ICT—Review,” J. Inf. Process. Syst., vol. 16, no. 6, pp. 1459–1478, 2020.
[3]
M. Coccia, S. Roshani, and M. Mosleh, “Evolution of quantum computing: Theoretical and innovation management implications for emerging quantum industry,” IEEE Trans. Eng. Manag., vol. 71, pp. 2270–2280, 2024.
[4]
J. Bozhko, Y. Hanna, R. Harrilal-Parchment, S. Tonyali, and K. Akkaya, “Performance evaluation of quantum-resistant TLS for consumer IoT devices,” in Proc. IEEE 20th Consum. Commun. Netw. Conf. (CCNC), 2023, pp. 230–235.
[5]
S. T. C. Baek, T. Otsuka, and B. S. Choi, “Density matrix simulation of quantum error correction codes for near-term quantum devices,” Quantum Sci. Technol., vol. 5, no. 1, 2019, Art. no.
[6]
D. Javeed, M. S. Saeed, I. Ahmad, P. Kumar, A. Jolfaei, and M. Tahir, “An intelligent intrusion detection system for smart consumer electronics network,” IEEE Trans. Consum. Electron., vol. 69, no. 4, pp. 906–913, Nov. 2023.
[7]
S. He, C. Du, and M. S. Hossain, “6G-enabled consumer electronics device intrusion detection with federated meta-learning and digital twins in a meta-verse environment,” IEEE Trans. Consum. Electron., vol. 70, no. 1, pp. 3111–3119, Feb. 2024.
[8]
V. S. Baghel and S. Prakash, “Generation of secure fingerprint template using DFT for consumer electronics devices,” IEEE Trans. Consum. Electron., vol. 69, no. 2, pp. 118–127, May 2023.
[9]
K. Doulani, A. Rajput, A. Hazra, M. Adhikari, and A. K. Singh, “Explainable AI for communicable disease prediction and sustainable living: Implications for consumer electronics,” IEEE Trans. Consum. Electron., vol. 70, no. 1, pp. 2460–2467, Feb. 2024.
[10]
C. K. Wu, C.-T. Cheng, Y. Uwate, G. Chen, S. Mumtaz, and K. F. Tsang, “State-of-the-art and research opportunities for next-generation consumer electronics,” IEEE Trans. Consum. Electron., vol. 69, no. 4, pp. 937–948, Nov. 2023.
[11]
R. Li, Z. Wang, L. Fang, C. Peng, W. Wang, and H. Xiong, “Efficient blockchain-assisted distributed identity-based signature scheme for integrating consumer electronics in metaverse,” IEEE Trans. Consum. Electron., vol. 70, no. 1, pp. 3770–3780, Feb. 2024.
[12]
J. Jeon, B. Jeong, and Y.-S. Jeong, “Intelligent resource scaling for container-based digital twin simulation of consumer electronics,” IEEE Trans. Consum. Electron., vol. 70, no. 1, pp. 3131–3140, Feb. 2024.
[13]
Q. Wang, R. Y. K. Lau, and X. Mao, “Blockchain-enabled smart contracts for enhancing distributor-to-consumer transactions,” IEEE Consum. Electron. Mag., vol. 8, no. 6, pp. 22–28, Nov. 2019.
[14]
S. Anbalagan, G. Raja, S. Gurumoorthy, R. Deepak Suresh, and K. Ayyakannu, “Blockchain assisted hybrid intrusion detection system in autonomous vehicles for industry 5.0,” IEEE Trans. Consum. Electron., vol. 69, no. 4, pp. 881–889, Nov. 2023.
[15]
B. B. Gupta, A. Gaurav, and V. Arya, “Secure and privacy-preserving Decentralized federated learning for personalized recommendations in consumer electronics using blockchain and homomorphic encryption,” IEEE Trans. Consum. Electron., vol. 70, no. 1, pp. 2546–2556, Feb. 2024.
[16]
M. Sayad Haghighi, F. Farivar, A. Jolfaei, A. Bayrami Asl, and W. Zhou, “Cyber attacks via consumer electronics: Studying the threat of covert malware in smart and autonomous vehicles,” IEEE Trans. Consum. Electron., vol. 69, no. 1, pp. 825–832, Nov. 2023.
[17]
J. Wu, J. Zhang, M. Bilal, F. Han, N. Victor, and X. Xu, “A federated deep learning framework for privacy-preserving consumer electronics recommendations,” IEEE Trans. Consum. Electron., vol. 70, no. 1, pp. 2628–2638, Feb. 2024.
[18]
Z. Yang, M. Zolanvari, and R. Jain, “A survey of important issues in quantum computing and communications,” IEEE Commun. Surveys Tuts., vol. 25, no. 2, pp. 1059–1094, 2nd Quart., 2023.
[19]
R. Ur Rasool, H. F. Ahmad, W. Rafique, A. Qayyum, J. Qadir, and Z. Anwar, “Quantum computing for healthcare: A review,” Future Internet, vol. 15, no. 3, p. 94, 2023.
[20]
R. Orús, S. Mugel, and E. Lizaso, “Quantum computing for finance: Overview and prospects,” Rev. Phys., vol. 4, Nov. 2019, Art. no.
[21]
M. Schlosshauer, “Quantum decoherence,” Phys. Rep., vol. 831, pp. 1–57, Oct. 2019.
[22]
C. Li, T. Li, Y.-X. Liu, and P. Cappellaro, “Effective routing design for remote entanglement generation on quantum networks,” Npj Quantum Inf., vol. 7, no. 1, p. 10, 2021.
[23]
D. Ribezzo et al., “Deploying an inter-European quantum network,” Adv. Quantum Technol., vol. 6, no. 2, 2023, Art. no.
[24]
P. K. Roy, “Quantum logic gates,” 2020. [Online]. Available: https://www.researchgate.net/publication/343833536_Quantum_Logic_Gates
[25]
D. Quan, C. Liu, X. Lv, and C. Pei, “Implementation of fault-tolerant encoding circuit based on stabilizer implementation and 'flag' bits in steane code,” Entropy, vol. 24, no. 8, p. 1107, 2022.
[26]
W. Almuhtadi and F. Lamberti, “Establishing the technical activities and technical committees of IEEE consumer technology society,” IEEE Consum. Electron. Mag., vol. 11, no. 4, pp. 4–6, Jul. 2022.
[27]
N. Delfosse, B. W. Reichardt, and K. M. Svore, “Beyond single-shot fault-tolerant quantum error correction,” IEEE Trans. Inf. Theory, vol. 68, no. 1, pp. 287–301, Jan. 2022.
[28]
Z. Babar, P. Botsinis, D. Alanis, S. X. Ng, and L. Hanzo, “The road from classical to quantum codes: A hashing bound approaching design procedure,” IEEE Access, vol. 3, pp. 146–176, 2015.
[29]
R. Kukulski, U. Pawela, and Z. Puchała, “On the probabilistic quantum error correction,” IEEE Trans. Inf. Theory, vol. 69, no. 7, pp. 4620–4640, Jul. 2023.
[30]
H.-H. Chang, “An introduction to error-correcting codes: From classical to quantum,” 2006, arXiv:quant-ph/0602157.
[31]
R. B. Griffiths, “Hilbert space quantum mechanics is noncontextual,” Stud. Hist. Philos. Sci. Part B, Stud. Hist. Philos. Modern Phys., vol. 44, no. 3, pp. 174–181, 2013.
[32]
G. Casati, D. L. Shepelyansky, and E. P. Zoller, Quantum Computers, Algorithms and Chaos, vol. 162. Amsterdam, The Netherlands: IOS Press, 2006, pp. 1–32.
[33]
O. O. Khalifa, N. A. bt Sharif, R. A. Saeed, S. Abdel-Khalek, A. N. Alharbi, and A. A. Alkathiri, “Digital system design for quantum error correction codes,” Contrast Media Mol. Imag., vol. 2021, p. 8, Dec. 2021. 10.1155/2021/1101911.
[34]
S. J. Devitt, W. J. Munro, and K. Nemoto, “Quantum error correction for beginners,” Rep. Prog. Phys., vol. 76, no. 7, 2013, Art. no.
[35]
T. A. Brun, “Quantum error correction,” 2019, arXiv:1910.03672.
[36]
R. Matsumoto and M. Hagiwara, “A survey of quantum error correction,” IEICE Trans. Fundam. Electron., Commun. Comput. Sci., vol. 104, no. 12, pp. 1654–1664, 2021.
[37]
P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Phys. Rev. A, vol. 52, no. 4, 1995, Art. no.
[38]
R. S. Andrist, “Understanding topological quantum error correction codes using classical spin models,” Ph.D. dissertation, Dept. Phys., ETH Zurich, Zürich, Switzerland, 2012.
[39]
R. Andrist, “Suppressing quantum errors by scaling a surface code logical qubit,” Nature, vol. 614, pp. 676–681, Feb. 2023.
[40]
A. Javadi-Abhari et al., “Optimized surface code communication in superconducting quantum computers,” in Proc. 50th Annu. IEEE/ACM Int. Symp. Microarchit., 2017, pp. 692–705.
[41]
J. Napp and J. Preskill, “Optimal Bacon-Shor codes,” Quant. Inf. Comput., vol. 13, pp. 490–510, May 2013.
[42]
A. B. Aloshious and P. K. Sarvepalli, “Projecting three-dimensional color codes onto three-dimensional toric codes,” Phys. Rev. A, vol. 98, Jul. 2018, Art. no.
[43]
A. Grospellier and A. Krishna, “Numerical study of hypergraph product codes,” 2018, arXiv:1810.03681.
[44]
A. O. Quintavalle, “Hypergraph product codes: A bridge to scalable quantum computers,” M.S. thesis, Dept. Phys. Astron., Univ. Sheffield, Sheffield, U.K., 2022.
[45]
S. Bravyi and M. B. Hastings, “Homological product codes,” 2014, arXiv:1311.0885.
[46]
Z. Himwich, “Applications of graph theory and homological algebra to quantum LDPC codes.,” 2022. [Online]. Available: https://henryyuen.net/spring2022/projects/qldpc.pdf
[47]
R. Chao and B. W. Reichardt, “Flag fault-tolerant error correction for any stabilizer code,” PRX Quantum, vol. 1, no. 1, 2020, Art. no.
[48]
F. Battistel et al., “Real-time decoding for fault-tolerant quantum computing: Progress, challenges and outlook,” Nano Futures, vol. 7, no. 3, 2023, Art. no.
[49]
M. Wang et al., “Improving the capacity of quantum dense coding and the fidelity of quantum teleportation by weak measurement and measurement reversal,” Entropy, vol. 25, no. 5, p. 736, 2023.
[50]
P. Aliferis, “Level reduction and the quantum threshold theorem,” 2011, arXiv:quant-ph/0703230.
[51]
S. Veroni, M. Müller, and G. Giudice, “Optimized measurement-free and fault-tolerant quantum error correction for neutral atoms,” 2024, arXiv:2404.11663.
Index Terms
- Quantum Error Correction Codes in Consumer Technology: Modeling and Analysis
Index terms have been assigned to the content through auto-classification.
Recommendations
Nonlocal quantum information in bipartite quantum error correction
We show how to convert an arbitrary stabilizer code into a bipartite quantum code. A bipartite quantum code is one that involves two senders and one receiver. The two senders exploit both nonlocal and local quantum resources to encode quantum ...
Effects of quantum error correction on entanglement sudden death
We investigate the effects of error correction on non-local quantum coherence as a function of time, extending the study by Sainz and Björk [1]. We consider error correction of amplitude damping, pure phase damping and combinations of amplitude and ...
Comments
Please enable JavaScript to view thecomments powered by Disqus.Information & Contributors
Information
Published In
0098-3063 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Publisher
IEEE Press
Publication History
Published: 01 November 2024
Qualifiers
- Research-article
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0
Reflects downloads up to 30 Jan 2025