[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

A Fast Exact Functional Test for Directional Association and Cancer Biology Applications

Published: 01 May 2019 Publication History

Abstract

Directional association measured by functional dependency can answer important questions on relationships between variables, for example, in discovery of molecular interactions in biological systems. However, when one has no prior information about the functional form of a directional association, there is not a widely established statistical procedure to detect such an association. To address this issue, here we introduce an exact functional test for directional association by examining the strength of functional dependency. It is effective in promoting functional patterns by reducing statistical power on dependent non-functional patterns. We designed an algorithm to carry out the test using a fast branch-and-bound strategy, which achieved a substantial speedup over brute-force enumeration. On data from an epidemiological study of liver cancer, the test identified the hepatitis status of a subject as the most influential risk factor among others for the cancer phenotype. On human lung cancer transcriptome data, the test selected 1068 transcription start sites of putative noncoding RNAs directionally associated with the presence or absence of lung cancer, stronger than 95 percent transcription start sites of 694 curated cancer genes. These predictions include non-monotonic interaction patterns, to which other routine tests were insensitive. Complementing symmetric non-directional association methods such as Fisher's exact test, the exact functional test is a unique exact statistical test for evaluating evidence for causal relationships.

References

[1]
H. Gao, X. Ouyang, W. Banach-Petrosky, A. D. Borowsky, Y. Lin, M. Kim, H. Lee, W.-J. Shih, R. D. Cardiff, M. M. Shen, and C. Abate-Shen, "A critical role for p27kip1 gene dosage in a mouse model of prostate carcinogenesis," Proc. Nat. Acad. Sci. USA, vol. 101, no. 49, pp. 17 204-17 209, 2004.
[2]
H. H. Nguyen, S. C. Tilton, C. J. Kemp, and M. Song, "Nonmonotonic pathway gene expression analysis reveals oncogenic role of p27/Kip1 at intermediate dose," Cancer Inf., vol. 16, 2017, Art. no. 1176935117740132.
[3]
J. Rashidian, E. Le Scolan, X. Ji, Q. Zhu, M. M. Mulvihill, D. Nomura, and K. Luo, "Ski regulates Hippo and TAZ signaling to suppress breast cancer progression," Sci. Signaling, vol. 8, no. 363, 2015, Art. no. ra14.
[4]
S. Awasthi, "Toll-like receptor-4 modulation for cancer immunotherapy," Frontiers Immunology, vol. 5, 2014, Art. no. 328.
[5]
N. R. Draper and H. Smith, Applied Regression Analysis. Hoboken, NJ, USA: Wiley, 2014.
[6]
B. McCune, "Non-parametric habitat models with automatic interactions," J. Vegetation Sci., vol. 17, no. 6, pp. 819-830, 2006.
[7]
T. Hastie and R. Tibshirani, Generalized Additive Models. Hoboken, NJ, USA: Wiley, 1990.
[8]
K. Pearson, "On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling," Philosoph. Mag. Series 5, vol. 50, no. 302, pp. 157- 175, 1900.
[9]
R. A. Fisher, "On the interpretation of ?2 from contingency tables, and the calculation of P," J. Roy. Statist. Soc., vol. 85, no. 1, pp. 87- 94, 1922.
[10]
G. Freeman and J. H. Halton, "Note on an exact treatment of contingency, goodness of fit and other problems of significance," Biometrika, vol. 38, no. 1/2, pp. 141-149, 1951.
[11]
Y. Zhang and M. Song, "Deciphering interactions in causal networks without parametric assumptions," arXiv Molecular Networks, 2013, Art. no. arXiv:1311.2707.
[12]
S. M. Hill, L. M. Heiser, T. Cokelaer, M. Unger, N. K. Nesser, D. E. Carlin, Y. Zhang, A. Sokolov, E. O. Paull, C. K. Wong, K. Graim, A. Bivol, H. Wang, F. Zhu, B. Afsari, L. V. Danilova, A. V. Favorov, W. S. Lee, D. Taylor, C. W. Hu, B. L. Long, D. P. Noren, A. J. Bisberg, The HPN-DREAM Consortium, G. B. Mills, J. W. Gray, M. Kellen, T. Norman, S. Friend, A. A. Qutub, E. J. Fertig, Y. Guan, M. Song, J. M. Stuart, P. T. Spellman, H. Koeppl, G. Stolovitzky, J. Saez-Rodriguez, and S. Mukherjee, "Inferring causal molecular networks: Empirical assessment through a community-based effort," Nature Methods, vol. 13, no. 4, pp. 310-318, Apr. 2016.
[13]
L. Shen, N. Ahuja, Y. Shen, N. A. Habib, M. Toyota, A. Rashid, and J.-P. J. Issa, "DNA methylation and environmental exposures in human hepatocellular carcinoma," J. Nat. Cancer Inst., vol. 94, no. 10, pp. 755-761, 2002.
[14]
A. R. R. Forrest, H. Kawaji, M. Rehli, J. K. Baillie, M. J. L. de Hoon, V. Haberle, T. Lassmann, I. V. Kulakovskiy, M. Lizio, M. Itoh, R. Andersson, C. J. Mungall, T. F. Meehan, S. Schmeier, N. Bertin, M. Jorgensen, E. Dimont, E. Arner, C. Schmidl, U. Schaefer, Y. A. Medvedeva, C. Plessy, M. Vitezic, J. Severin, C. A. Semple, Y. Ishizu, R. S. Young, M. Francescatto, I. Alam, D. Albanese, G. M. Altschuler, T. Arakawa, J. A. C. Archer, P. Arner, M. Babina, S. Rennie, P. J. Balwierz, A. G. Beckhouse, S. Pradhan-Bhatt, J. A. Blake, A. Blumenthal, B. Bodega, A. Bonetti, J. Briggs, F. Brombacher, A. M. Burroughs, A. Califano, C. V. Cannistraci, D. Carbajo, Y. Chen, M. Chierici, Y. Ciani, H. C. Clevers, E. Dalla, C. A. Davis, M. Detmar, A. D. Diehl, T. Dohi, F. Drablos, A. S. B. Edge, M. Edinger, K. Ekwall, M. Endoh, H. Enomoto, M. Fagiolini, L. Fairbairn, H. Fang, M. C. Farach-Carson, G. J. Faulkner, A. V. Favorov, M. E. Fisher, M. C. Frith, R. Fujita, S. Fukuda, C. Furlanello, M. Furino, J., "A promoter-level mammalian expression atlas," Nature, vol. 507, no. 7493, pp. 462-470, Mar. 2014.
[15]
P. A. Futreal, L. Coin, M. Marshall, T. Down, T. Hubbard, R. Wooster, N. Rahman, and M. R. Stratton, "A census of human cancer genes," Nature Rev. Cancer, vol. 4, no. 3, pp. 177-183, 2004.
[16]
H. A. Simon and N. Rescher, "Cause and counterfactual," Philosophy Sci., vol. 33, no. 4, pp. 323-340, 1966.
[17]
M. Gail and N. Mantel, "Counting the number of r×c contingency tables with fixed margins," J. Am. Statist. Assoc., vol. 72, no. 360, pp. 859-862, 1977.
[18]
R. Sharma, S. Kumar, H. Zhong, and M. Song, "Simulating noisy, nonparametric, and multivariate discrete patterns," R. J., vol. 9, no. 2, pp. 366-377, 2017.
[19]
Y. Zhang, H. Zhong, R. Sharma, S. Kumar, and J. Song, FunChisq: Chi-Square and Exact Tests for Model-Free Functional Dependency, 2018, R package version 2.4.4. [Online]. Available: https://CRAN.R-project.org/package=FunChisq.
[20]
Y. Zhang, Z. L. Liu, and M. Song, "ChiNet uncovers gene rewired transcription subnetworks in tolerant yeast for advanced biofuels conversion," Nucleic Acids Res., vol. 43, no. 9, pp. 4393-4407, 2015.
[21]
B. Kaczkowski, Y. Tanaka, H. Kawaji, A. Sandelin, R. Andersson, M. Itoh, T. Lassmann, Y. Hayashizaki, P. Carninci, and A. R. R. Forrest, "Transcriptome analysis of recurrently deregulated genes across multiple cancers identifies new pan-cancer biomarkers," Cancer Res., vol. 76, no. 2, pp. 216-226, 2016.
[22]
M.-Y. Wu, K. W. Eldin, and A. L. Beaudet, "Identification of chromatin remodeling genes Arid4a and Arid4b as leukemia suppressor genes," J. Nat. Cancer Inst., vol. 100, no. 17, pp. 1247-1259, 2008.
[23]
C. Lin, W. Song, X. Bi, J. Zhao, Z. Huang, Z. Li, J. Zhou, J. Cai, and H. Zhao, "Recent advances in the ARID family: Focusing on roles in human cancer," OncoTargets Therapy, vol. 7, 2014, Art. no. 315.
[24]
S. F. Winter, L. Lukes, R. C. Walker, D. R. Welch, and K. W. Hunter, "Allelic variation and differential expression of the mSIN3A histone deacetylase complex gene Arid4b promote mammary tumor growth and metastasis," PLoS Genetics, vol. 8, no. 5, 2012, Art. no. e1002735.
[25]
J.-N. Cao, T.-W. Gao, A. E. Giuliano, and R. F. Irie, "Recognition of an epitope of a breast cancer antigen by human antibody," Breast Cancer Res. Treatment, vol. 53, no. 3, pp. 279-290, 1999.
[26]
R.-C. Wu, T.-L. Wang, and I.-M. Shih, "The emerging roles of ARID1A in tumor suppression," Cancer Biol. Therapy, vol. 15, no. 6, pp. 655-664, 2014.
[27]
Y. Yaginuma, A. Eguchi, and M. Yoshimoto, "HPVs and kinetochore functions in cervical cancers," JSM Clinical Oncology Res., vol. 2, pp. 1-2, 2014.
[28]
L. Michel, E. Diaz-Rodriguez, G. Narayan, E. Hernando, V. V. Murty, and R. Benezra, "Complete loss of the tumor suppressor MAD2 causes premature cyclin B degradation and mitotic failure in human somatic cells," Proc. Nat. Acad. Sci. USA, vol. 101, no. 13, pp. 4459-4464, 2004.
[29]
R. Sotillo, E. Hernando, E. Díaz-Rodríguez, J. Teruya-Feldstein, C. Cordón-Cardo, S. W. Lowe, and R. Benezra, "Mad2 overexpression promotes aneuploidy and tumorigenesis in mice," Cancer Cell, vol. 11, no. 1, pp. 9-23, 2007.
[30]
W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M. Zahler, and D. Haussler, "The human genome browser at UCSC," Genome Res., vol. 12, no. 6, pp. 996-1006, 2002.
[31]
ENCODE Project Consortium, "The ENCODE (ENCyclopedia of DNA elements) Project," Sci., vol. 306, no. 5696, pp. 636-640, 2004.
[32]
Y. Liu, X. Zhang, C. Han, G. Wan, X. Huang, C. Ivan, D. Jiang, C. Rodriguez-Aguayo, G. Lopez-Berestein, P. H. Rao, D. M. Maru, A. Pahl, X. He, A. K. Sood, L. M. Ellis, J. Anderl, and X. Lu, "TP53 loss creates therapeutic vulnerability in colorectal cancer," Nature, vol. 520, no. 7549, pp. 697-701, 2015.
[33]
M. T. Deavers and D. M. Coffey, Eds., Precision Molecular Pathology of Uterine Cancer. Cham, Switzerland: Springer, 2017.
[34]
M. P. Creyghton, A. W. Cheng, G. G. Welstead, T. Kooistra, B. W. Carey, E. J. Steine, J. Hanna, M. A. Lodato, G. M. Frampton, P. A. Sharp, L. A. Boyer, R. A. Young, and R. Jaenisch, "Histone H3K27ac separates active from poised enhancers and predicts developmental state," Proc. Nat. Acad. Sci. USA, vol. 107, no. 50, pp. 21 931-21 936, 2010.
[35]
V. E. Villegas and P. G. Zaphiropoulos, "Neighboring gene regulation by antisense long non-coding RNAs," Int. J. Mol. Sci., vol. 16, no. 2, pp. 3251-3266, 2015.
[36]
W.-Y. Lai, W.-Y. Wang, Y.-C. Chang, C.-J. Chang, P.-C. Yang, and K. Peck, "Synergistic inhibition of lung cancer cell invasion, tumor growth and angiogenesis using aptamer-siRNA chimeras," Biomaterials, vol. 35, no. 9, pp. 2905-2914, 2014.
[37]
S. Morishita and J. Sese, "Transversing itemset lattices with statistical metric pruning," in Proc. 19th ACM SIGMOD-SIGACT-SIGART Symp. Principles Database Syst., 2000, pp. 226-236.

Cited By

View all
  • (2022)A Bayesian approach to the analysis of asymmetric association for two-way contingency tablesComputational Statistics10.1007/s00180-021-01161-937:3(1311-1338)Online publication date: 1-Jul-2022
  • (2020)Joint Grid Discretization for Biological Pattern DiscoveryProceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics10.1145/3388440.3412415(1-10)Online publication date: 21-Sep-2020
  • (2019)Evaluating Model-free Directional Dependency Methods on Single-cell RNA Sequencing Data with Severe DropoutProceedings of the 6th International Conference on Bioinformatics Research and Applications10.1145/3383783.3383793(55-62)Online publication date: 19-Dec-2019
  1. A Fast Exact Functional Test for Directional Association and Cancer Biology Applications

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image IEEE/ACM Transactions on Computational Biology and Bioinformatics
    IEEE/ACM Transactions on Computational Biology and Bioinformatics  Volume 16, Issue 3
    May 2019
    348 pages

    Publisher

    IEEE Computer Society Press

    Washington, DC, United States

    Publication History

    Published: 01 May 2019
    Published in TCBB Volume 16, Issue 3

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)3
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 23 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2022)A Bayesian approach to the analysis of asymmetric association for two-way contingency tablesComputational Statistics10.1007/s00180-021-01161-937:3(1311-1338)Online publication date: 1-Jul-2022
    • (2020)Joint Grid Discretization for Biological Pattern DiscoveryProceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics10.1145/3388440.3412415(1-10)Online publication date: 21-Sep-2020
    • (2019)Evaluating Model-free Directional Dependency Methods on Single-cell RNA Sequencing Data with Severe DropoutProceedings of the 6th International Conference on Bioinformatics Research and Applications10.1145/3383783.3383793(55-62)Online publication date: 19-Dec-2019

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media