[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Derivative-Free Optimization of Rate Parameters of Capsid Assembly Models from Bulk in Vitro Data

Published: 01 July 2017 Publication History

Abstract

The assembly of virus capsids proceeds by a complicated cascade of association and dissociation steps, the great majority of which cannot be directly experimentally observed. This has made capsid assembly a rich field for computational models, but there are substantial obstacles to model inference for such systems. Here, we describe progress on fitting kinetic rate constants defining capsid assembly models to experimental data, a difficult data-fitting problem because of the high computational cost of simulating assembly trajectories, the stochastic noise inherent to the models, and the limited and noisy data available for fitting. We evaluate the merits of data-fitting methods based on derivative-free optimization DFO relative to gradient-based methods used in prior work. We further explore the advantages of alternative data sources through simulation of a model of time-resolved mass spectrometry data, a technology for monitoring bulk capsid assembly that can be expected to provide much richer data than previously used static light scattering approaches. The results show that advances in both the data and the algorithms can improve model inference. More informative data sources lead to high-quality fits for all methods, but DFO methods show substantial advantages on less informative data sources that better represent current experimental practice.

References

[1]
N. J. Krogan, G. Cagney, H. Yu, G. Zhong, X. Guo, A. Ignatchenko, J. Li, S. Pu, N. Datta, A. P. Tikuisis, T. Punna, J. M. Peregrín-Alvarez, M. Shales, X. Zhang, M. Davey, M. D. Robinson, A. Paccanaro, J. E. Bray, A. Sheung, B. Beattie, D. P. Richards, V. Canadien, A. Lalev, F. Mena, P. Wong, A. Starostine, M. M. Canete, J. Vlasblom, S. Wu, C. Orsi, S. R. Collins, S. Chandran, R. Haw, J. J. Rilstone, K. Gandi, N. J. Thompson, G. Musso, P. St Onge, S. Ghanny, M. H. Y. Lam, G. Butland, A. M. Altaf-Ul, S. Kanaya, A. Shilatifard, E. O'Shea, J. S. Weissman, C. J. Ingles, T. R. Hughes, J. Parkinson, M. Gerstein, S. J. Wodak, A. Emili and J. F. Greenblatt, "Global landscape of protein complexes in the yeast Saccharomyces cerevisiae," Nature, vol. 440, pp. 637-643, 2006.
[2]
S. Ghosh, Y. Matsuoka, Y. Asai, K.-Y. Hsin and H. Kitano, "Software for systems biology: From tools to integrated platforms," Nature Rev. Genetics, vol. 12, pp. 821-832, 2012.
[3]
J. R. Karr, J. C. Sanghvi, D. N. Macklin, M. V. Gutschow, J. M. Jacobs, B. Bolival Jr., N. Assad-Garcia and J. I. Glass, "A whole-cell computational model predicts phenotype from genotype," Cell, vol. 150, pp. 389-401, 2012.
[4]
R. Schwartz, P. W. Shor, P. E. Prevelige, Jr. and B. Berger, "Local rules simulation of the kinetics of virus capsid self-assembly," Biophys. J., vol. 75, pp. 2626-2636, 1998.
[5]
T. Keef, C. Micheletti and R. Twarock, "Master equation approach to the assembly of viral capsids," J. Theoretical Biology, vol. 242, pp. 713-721, 2006.
[6]
D. C. Rapoport, J. E. Johnson and J. Skolnick, "Supramolecular self-assembly: Molecular dynamics modeling of polyhedral shell formation," Comput. Phy. Commun., vol. 122, pp. 231-235, 1999.
[7]
M. F. Hagan and D. Chandler, "Dynamic pathways for viral capsid assembly," Biophys. J., vol. 91, pp. 42-54, 2006.
[8]
H. D. Nguyen, V. S. Reddy, and C. L. Brooks, "Deciphering the kinetic mechanism of spontaneous self-assembly of icosahedral capsids," Nano Lett., vol. 7, pp. 338-344, 2007.
[9]
B. Sweeney, T. Zhang, and R. Schwartz, "Exploring the phase space of complex self-assembly through virus capsid models," Biophys. J., vol. 94, pp. 772-783, 2008.
[10]
T. Zhang and R. Schwartz, "Simulation study of the contribution of oligomer/oligomer binding to capsid assembly kinetics," Biophys. J., vol. 90, pp. 57-64, 2006.
[11]
M. Misra, D. Lees, T. Zhang and R. Schwartz, "Pathway complexity of model virus capsid assembly Systems," Comput. Methods Math. Med., vol. 9, pp. 277-293, 2008.
[12]
R. Schwartz, P. E. Prevelige, Jr. and B. Berger, "Local rules modeling of nucleation-limited virus capsid assembly," Technical Memo 584, MIT Laboratory for Computer Science, Cambridge, MA, 1998.
[13]
R. Schwartz, P. W. Shor and B. Berger, "Local rule simulations of capsid assembly," J. Theoretical Med., vol. 6, pp. 81-86, 2005.
[14]
B. Berger, J. King, R. Schwartz and P. W. Shor, "Local rule mechanism for selecting icosahedral shell Geometry," Discr. Appl. Math., vol. 91, pp. 97-111, 2000.
[15]
B. Berger, P. W. Shor, L. Tucker-Kellog and J. King, "Local rule-based theory of virus shell assembly," in Proc. Nat. Academy Sci., vol. 104, pp. 7732-7736, 1994.
[16]
T. Zhang, R. Rohlfs and R. Schwartz, "Implementation of a discrete event simulator for biological self-assembly systems," in Proc. Winter Simulation Conf., pp. 2223-2231, 2005.
[17]
G. Lillacci and M. Khammash, "Parameter estimation and model selection in computational biology," PLOS Comput. Biol., vol. 6, no. 3, p. e1000696, 2010.
[18]
S. Rudorf, M. Thommen, M. V. Rodnina and R. Lipowsky, "Deducing the kinetics of protein aynthesis in vivo from the transition rates measured in vitro," PLOS Comput. Biol., vol. 10, no. 10, p. e1003909, 2014.
[19]
M. Elemans, A. Florins, L. Willems and B. Asquith, "Rates of CTL killing in persistent viral infection in vivo," PLOS Comput. Biol., vol. 10, no. 4, p. e1003534, 2014.
[20]
E. O. Voit, "Biochemical systems theory: A review," ISRN Biomath., vol. 2013, 2013, Art. no. 897658.
[21]
W. S. Hlavacek, J. R. Faeder, M. L. Blinov, A. S. Perelson, and B. Goldstein, "The complexity of complexes in signal transduction," Biotechnol. Bioeng., vol. 84, pp. 783-794, 2003.
[22]
W. S. Hlavacek, J. R. Faeder, M. L. Blinov, R. G. Posner, M. Hucka and W. Fontana, "Rules for modeling signal transduction systems," Sci. STKE, vol. 344, p. re6, 2006.
[23]
V. Danos, J. Feret, W. Fontana, R. Harmer and J. Krivine, "Rule-based modelling of cellular signaling," Lecture Notes Comput. Sci., vol. 4073, pp. 17-41, 2007.
[24]
J. S. Hogg, L. A. Harris, L. J. Stover, N. S. Nair and J. R. Faeder, "Exact hybrid particle/population simulation of rule-based models of biochemical systems," PLOS Comput. Biol., vol. 10, no. 4, p. e1003544, 2014.
[25]
R. P. Mann, A. Perna, D. Strömbom, R. Garnett, J. E. Herbert-Read J, D. J. Sumpter and A. J. W. Ward, "Multi-scale inference of interaction rules in animal groups using Bayesian model selection," PLOS Comput. Biol., vol. 9, no. 3, p. e10002961, 2013.
[26]
J. F. Ollivier, V. Shahrezaei and P. S. Swain, "Scalable rule-based modelling of allosteric proteins and biochemical networks," PLOS Comput. Biol., vol. 6, no. 11, p. e1000975, 2010.
[27]
D. E. White, M. A. Kinney, T. C. McDevitt, and M. L. Kemp, "Spatial pattern dynamics of 3D stem cell loss of pluripotency via rules-based computational modeling," PLOS Comput. Biol., vol. 9, no. 3, p. e1002952, 2013.
[28]
F. Jamalyaria, R. Rohlfs and R. Schwartz, "Queue-based method for efficient simulation of biological self-assembly systems," J. Comput. Phys., vol. 204, pp. 100-120, 2005.
[29]
M. Misra and R. Schwartz, "Efficient stochastic sampling of first-passage times with applications to self-assembly simulations," J. Chem. Phys., vol. 129, p. 204109, 2008.
[30]
M. S. Kumar and R. Schwartz, "A parameter estimation technique for stochastic self-assembly systems and its application to human papillomavirus self-assembly," Phys. Biol., vol. 7, p. 045005, 2010.
[31]
L. Xie, G. R. Smith, X. Feng, and R. Schwartz, "Surveying capsid assembly pathways through simulation-based data fitting," Biophys. J., vol. 103, pp. 1545-1554, 2012.
[32]
G. R. Smith, L. Xie, B. Lee, and R. Schwartz, "Applying molecular crowding models to simulations of virus capsid assembly in vitro," Biophys. J., vol. 106, pp. 310-320, 2014.
[33]
L. M. Rios and N. V. Sahinidis, "Derivative-free optimization: A review of algorithms and comparison of software implementations," J. Global Optimization, vol. 56, no. 3, pp. 1247- 1293, 2013.
[34]
W. Huyer and A. Neumaier, "Global optimization by Multilevel Coordinate Search (MCS)," J. Global Optimzation, vol. 14, pp. 331- 355, 1999.
[35]
W. Huyer and A. Neumaier, "SNOBFIT: Stable noisy optimization by branch and fit," ACM Trans. Math. Softw., vol. 35, pp. 1-25, 2008.
[36]
A. Zlotnick, J. M. Johnson, P. W. Wingfield, S. J. Stahl and D. Endres, "A theoretical model successfully identifies features of hepatitis B virus capsid assembly," Biochemistry, vol. 38, pp. 14644-14652, 1999.
[37]
T. W. Knapman, V. L. Morton, N. J. Stonehouse, P. G. Stockley and A. E. Ashcroft, "Determining the topology of virus assembly intermediates using ion mobility spectrometry - mass spectrometry," Rapid Commun. Mass Spectrometry, vol. 24, pp. 3033-3042, 2010.
[38]
J. Serrière, D. Fenel, G. Schoehn, P. Gouet and C. Guillon, "Biophysical characterization of the feline immunodeficiency virus p24 capsid protein conformation and in vitro capsid assembly," PLOS ONE, vol. 8, no. 2, p. e56424, 2013.
[39]
R. Tuma, H. Tsuruta, K. H. French and P. E. Prevelige, "Detection of intermediates and kinetic control during assembly of bacteriophage P22 procapsid," J. Molecular Biol., vol. 381, pp. 1395-1406, 2008.
[40]
D. E. Gillespie, "Exact stochastic simulation of coupled chemical reactions," J. Phys. Chem., vol. 81, pp. 2340-2361, 1977.
[41]
G. L. Casini, D. Graham, D. Heine, R. L. Garcea, and D. T. Wu, "In vitropapillomavirus capsid assembly," Virology, vol. 325, pp. 320- 327, 2004.
  1. Derivative-Free Optimization of Rate Parameters of Capsid Assembly Models from Bulk in Vitro Data

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image IEEE/ACM Transactions on Computational Biology and Bioinformatics
    IEEE/ACM Transactions on Computational Biology and Bioinformatics  Volume 14, Issue 4
    July 2017
    250 pages

    Publisher

    IEEE Computer Society Press

    Washington, DC, United States

    Publication History

    Published: 01 July 2017
    Published in TCBB Volume 14, Issue 4

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 31
      Total Downloads
    • Downloads (Last 12 months)2
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 12 Dec 2024

    Other Metrics

    Citations

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media