[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

An LDPC Code Based Physical Layer Message Authentication Scheme With Prefect Security

Published: 01 April 2018 Publication History

Abstract

In this paper, we study physical layer message authentication with <italic>perfect security</italic> for wireless networks, regardless of the computational power of adversaries. Specifically, we propose an efficient and feasible authentication scheme based on low-density parity-check (LDPC) codes and <inline-formula> <tex-math notation="LaTeX">$\epsilon $ </tex-math></inline-formula>-AU<sub>2</sub> hash functions over binary-input wiretap channel. First, a multi-message authentication scheme for noiseless main channel case is presented by leveraging a novel <inline-formula> <tex-math notation="LaTeX">$\epsilon $ </tex-math></inline-formula>-AU<sub>2</sub> hash function family and the dual of large-girth LDPC codes. Concretely, the sender Alice first generates a message tag <inline-formula> <tex-math notation="LaTeX">$T$ </tex-math></inline-formula> with message <inline-formula> <tex-math notation="LaTeX">$M$ </tex-math></inline-formula> and key <inline-formula> <tex-math notation="LaTeX">$K$ </tex-math></inline-formula> by using a lightweight <inline-formula> <tex-math notation="LaTeX">$\epsilon $ </tex-math></inline-formula>-AU<sub>2</sub> hash functions; then Alice encodes <inline-formula> <tex-math notation="LaTeX">$T$ </tex-math></inline-formula> to a codeword <inline-formula> <tex-math notation="LaTeX">$X^{n}$ </tex-math></inline-formula> with the dual of large-girth LDPC codes; finally, Alice sends <inline-formula> <tex-math notation="LaTeX">$(M,X^{n})$ </tex-math></inline-formula> to the receiver Bob noiselessly. An adversary Eve has infinite computational capacity, and he can obtain <inline-formula> <tex-math notation="LaTeX">$M$ </tex-math></inline-formula> and the output <inline-formula> <tex-math notation="LaTeX">$Z^{n}$ </tex-math></inline-formula> of the BEC with input <inline-formula> <tex-math notation="LaTeX">$X^{n}$ </tex-math></inline-formula>. Then, an authentication scheme over binary erasure channel and binary-input wiretapper&#x2019;s channel is further developed, which can reduce the noisy main channel case to noiseless main channel case by leveraging public discussion. We theoretically prove that, the proposed schemes are perfect secure if the number of attacks from Eve is upper bounded by a polynomial times in terms of <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>. Furthermore, the simulation results are provided to demonstrate that the proposed schemes can achieve high authentication rate with low time latency.

References

[1]
J. G. Andrewset al., “What will 5G be?” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1065–1082, Jun. 2014.
[2]
N. Zhanget al., “Software defined networking enabled wireless network virtualization: Challenges and solutions,” IEEE Netw., vol. 31, no. 5, pp. 42–49, May 2017.
[3]
K. Zhang, K. Yang, X. Liang, Z. Su, X. Shen, and H. H. Luo, “SecuriSecurity and privacy for mobile healthcare networks: From a quality of protection perspective,” IEEE Wireless Commun., vol. 22, no. 4, pp. 104–112, Aug. 2015.
[4]
G. J. Simmons, “Authentication theory/coding theory,” in Advances in Cryptology-CRYPTO. New York, NY, USA: Springer-Verlag, 1985, pp. 411–431.
[5]
U. M. Maurer, “Authentication theory and hypothesis testing,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1350–1356, Jul. 2000.
[6]
A. D. Wyner, “The wire-tap channel,” Bell Syst. Tech. J., vol. 54, pp. 1355–1387, Oct. 1975.
[7]
I. Csiszár and J. Köner, “Broadcast channels with confidential messages,” IEEE Trans. Inf. Theory, vol. IT-24, no. 3, pp. 339–348, May 1978.
[8]
D. Chenet al., “S2M: A lightweight acoustic fingerprints-based wireless device authentication protocol,” IEEE Internet Things J., vol. 4, no. 1, pp. 88–100, Feb. 2017.
[9]
Y. Zhu, L. Wang, K.-K. Wong, and R. W. Heath, “Physical layer security in large-scale millimeter wave ad hoc networks,” in Proc. IEEE Globcom, Washington, DC, USA, Dec. 2016, pp. 4–8.
[10]
L. Lai, H. El Gamal, and H. V. Poor, “Authentication over noisy channels,” IEEE Trans. Inf. Theory, vol. 55, no. 2, pp. 906–916, Feb. 2009.
[11]
D. Chen, S. Jiang, and Z. Qin, “Message authentication code over a wiretap channel,” in Proc. ISIT, 2015, pp. 2301–2305.
[12]
J. Bao, X. Gao, X. G. Xu, R. Guo, and B. Jiang, “Low rate QC LDPC codes with reconfigurable structures for space information networks,” J. Commun., vol. 11, no. 3, pp. 255–262, Mar. 2016.
[13]
R. G. Maunder, “A vision for 5G channel coding,” AccelerComm, Hampshire, U.K., White Paper, 2016. [Online]. Available: https://www.accelercomm.com/download/pdf/5G-Channel-Coding.pdf
[14]
U. Maurer and S. Wolf, “Secret-key agreement over unauthenticated public channels—Part I: Definitions and a completeness result,” IEEE Trans. Inf. Theory, vol. 49, no. 4, pp. 822–831, Apr. 2003.
[15]
R. Ahlswede and I. Csiszar, “Common randomness in information theory and cryptography. II. CR capacity,” IEEE Trans. Inf. Theory, vol. 44, no. 1, pp. 225–240, Jan. 1998.
[16]
N. Zhang, N. Cheng, N. Lu, X. Zhang, J. W. Mark, and X. Shen, “Partner selection and incentive mechanism for physical layer security,” IEEE Trans. Wireless Commun., vol. 14, no. 8, pp. 4265–4276, Aug. 2015.
[17]
X. Fang, N. Zhang, S. Zhang, D. Chen, X. Sha, and X. Shen, “On physical layer security: Weighted fractional Fourier transform based user cooperation,” IEEE Trans. Wireless Commun., vol. 16, no. 8, pp. 5498–5510, Aug. 2017.
[18]
L. H. Ozarow and A. D. Wyner, “Wire-tap channel II,” ATT Bell Lab. Tech. J., vol. 63, no. 10, pp. 2135–2157, 1984.
[19]
A. Thangaraj, S. Dihidar, A. R. Calderbank, S. W. McLaughlin, and J.-M. Merolla, “Applications of LDPC codes to the wiretap channel,” IEEE Trans. Inf. Theory, vol. 53, no. 8, pp. 2933–2945, Aug. 2007.
[20]
A. T. Suresh, A. Subramanian, A. Thangaraj, M. Bloch, and S. W. McLaughlin, “Strong secrecy for erasure wiretap channels,” in Proc. IEEE Inf. Theory Workshop, Dublin, Ireland, Sep. 2010, pp. 1–5.
[21]
A. Subramanian, A. Thangaraj, M. Bloch, and S. W. McLaughlin, “Strong secrecy on the binary erasure wiretap channel using large-girth LDPC codes,” IEEE Trans. Inf. Forensics Security, vol. 6, no. 3, pp. 585–594, Sep. 2011.
[22]
J. Jin, C. Xiao, M. Tao, and W. Chen, “Linear precoding for fading cognitive multiple-access wiretap channel with finite-alphabet inputs,” IEEE Trans. Veh. Technol., vol. 66, no. 4, pp. 3059–3070, Apr. 2017.
[23]
Y. Wuet al., “Low-complexity MIMO precoding for finite-alphabet signals,” IEEE Trans. Wireless Commun., vol. 16, no. 7, pp. 4571–4584, May 2017.
[24]
E. Hof and S. Shamai (Shitz), “Secrecy-achieving polar-coding,” in Proc. IEEE Inf. Theory Workshop, Dublin, Ireland, Sep. 2010, pp. 1–5.
[25]
H. Mahdavifar and A. Vardy, “Achieving the secrecy capacity of wiretap channels using polar codes,” IEEE Trans. Inf. Theory, vol. 57, no. 10, pp. 6428–6443, Oct. 2011.
[26]
V. Korzhik, V. Yakovlev, G. Morales-Luna, and R. Chesnokov, “Performance evaluation of keyless authentication based on noisy channel,” in Proc. MMM-ACNS, Heidelberg, Germany, 2007, pp. 115–126.
[27]
P. Baracca, N. Laurenti, and S. Tomasin, “Physical layer authentication over MIMO fading wiretap channels,” IEEE Trans. Wireless Commun., vol. 11, no. 7, pp. 2564–2573, Jul. 2012.
[28]
A. Ferrante, N. Laurenti, C. Masiero, M. Pavon, and S. Tomasin. (2013). “On the achievable error region of physical layer authentication techniques over Rayleigh fading channels.” [Online]. Available: https://arxiv.org/abs/1303.0707
[29]
S. Jiang, “Keyless authentication in a noisy model,” IEEE Trans. Inf. Forensics Security, vol. 9, no. 6, pp. 1024–1033, Apr. 2014.
[30]
S. Jiang, “On the Optimality of Keyless Authentication in a Noisy Model,” IEEE Trans. Inf. Forensics Security, vol. 10, no. 6, pp. 1250–1261, Jun. 2015.
[31]
D. Chen, N. Cheng, N. Zhang, K. Zhang, Z. Qin, and X. Shen, “Multi-message authentication over noisy channel with polar codes,” in Proc. IEEE MASS, Orlando, FL, USA, Oct. 2017, pp. 46–54.
[32]
S. Fang, Y. Liu, and P. Ning, “Mimicry attacks against wireless link signature and new defense using time-synched link signature,” IEEE Trans. Inf. Forensics Security, vol. 11, no. 7, pp. 1515–1527, Jul. 2016.
[33]
W. Wang, Z. Sun, S. Piao, B. Zhu, and K. Ren, “Wireless physical-layer identification: Modeling and validation,” IEEE Trans. Inf. Forensics Security, vol. 11, no. 9, pp. 2091–2106, Sep. 2016.
[34]
T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge, U.K.: Cambridge Univ. Press, 2008.
[35]
D. Chen, Z. Qin, X. Mao, P. Yang, Z. Qin, and R. Wang, “SmokeGrenade: An efficient key generation protocol with artificial interference,” IEEE Trans. Inf. Forensics Security, vol. 8, no. 11, pp. 1731–1745, Nov. 2013.
[36]
Q. Wang, K. Xu, and K. Ren, “Cooperative secret key generation from phase estimation in narrowband fading channels,” IEEE J. Sel. Areas Commun., vol. 30, no. 9, pp. 1666–1674, Oct. 2012.
[37]
M. Bloch and J. Barros, Physical-Layer Security: From Information Theory to Security Engineering. Cambridge, U.K.: Cambridge Univ. Press, 2011.
[38]
I. Csiszár, “Almost independence and secrecy capacity,” Problems Inf. Transmiss., vol. 32, no. 1, pp. 40–47, 1996.
[39]
B. den Boer, “A simple and key-economical unconditional authentication scheme,” J. Comput. Security, vol. 2, no. 1, pp. 65–71, 1993.
[40]
J. H. Silverman, “Fast multiplication in finite field $GF(2^{n})$,” in Proc. CHES, 1999, pp. 122–134.
[41]
R. Safavi-Naini and P. R. Wild, “Information theoretic bounds on authentication systems in query model,” IEEE Trans. Inf. Theory, vol. 54, no. 6, pp. 2426–2436, Jun. 2008.

Cited By

View all
  • (2024)A Comprehensive Survey on Physical Layer Authentication Techniques: Categorization and Analysis of Model-Driven and Data-Driven ApproachesACM Computing Surveys10.1145/3708496Online publication date: 16-Dec-2024
  • (2023)Physical Layer Authentication Based on Channel Polarization Response in Dual-Polarized Antenna Communication SystemsIEEE Transactions on Information Forensics and Security10.1109/TIFS.2023.326362418(2144-2159)Online publication date: 1-Jan-2023
  • (2022)On Message Authentication Channel Capacity Over a Wiretap ChannelIEEE Transactions on Information Forensics and Security10.1109/TIFS.2022.320138617(3107-3122)Online publication date: 1-Jan-2022
  • Show More Cited By

Index Terms

  1. An LDPC Code Based Physical Layer Message Authentication Scheme With Prefect Security
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image IEEE Journal on Selected Areas in Communications
        IEEE Journal on Selected Areas in Communications  Volume 36, Issue 4
        April 2018
        286 pages

        Publisher

        IEEE Press

        Publication History

        Published: 01 April 2018

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 05 Jan 2025

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)A Comprehensive Survey on Physical Layer Authentication Techniques: Categorization and Analysis of Model-Driven and Data-Driven ApproachesACM Computing Surveys10.1145/3708496Online publication date: 16-Dec-2024
        • (2023)Physical Layer Authentication Based on Channel Polarization Response in Dual-Polarized Antenna Communication SystemsIEEE Transactions on Information Forensics and Security10.1109/TIFS.2023.326362418(2144-2159)Online publication date: 1-Jan-2023
        • (2022)On Message Authentication Channel Capacity Over a Wiretap ChannelIEEE Transactions on Information Forensics and Security10.1109/TIFS.2022.320138617(3107-3122)Online publication date: 1-Jan-2022
        • (2022)Physical layer authentication in MIMO systems: a carrier frequency offset approachWireless Networks10.1007/s11276-022-02916-y28:5(1909-1921)Online publication date: 1-Jul-2022
        • (2021)Hardware Efficient Architectural Design for Physical Layer Security in Wireless CommunicationWireless Personal Communications: An International Journal10.1007/s11277-021-08536-7120:2(1821-1836)Online publication date: 27-May-2021
        • (2021)Improved algorithm for management of outsourced databaseNeural Computing and Applications10.1007/s00521-020-05047-733:2(647-653)Online publication date: 1-Jan-2021

        View Options

        View options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media