Spatial Data Mining Features between General Data Mining
Abstract
- Spatial Data Mining Features between General Data Mining
Recommendations
Mining fuzzy specific rare itemsets for education data
Association rule mining is an important data analysis method for the discovery of associations within data. There have been many studies focused on finding fuzzy association rules from transaction databases. Unfortunately, in the real world, one may ...
Mining uncertain data for constrained frequent sets
IDEAS '09: Proceedings of the 2009 International Database Engineering & Applications SymposiumData mining aims to search for implicit, previously unknown, and potentially useful pieces of information---such as sets of items that are frequently co-occurring together---that are embedded in data. The mined frequent sets can be used in the discovery ...
PARM—An Efficient Algorithm to Mine Association Rules From Spatial Data
Association rule mining, originally proposed for market basket data, has potential applications in many areas. Spatial data, such as remote sensed imagery (RSI) data, is one of the promising application areas. Extracting interesting patterns and rules ...
Comments
Please enable JavaScript to view thecomments powered by Disqus.Information & Contributors
Information
Published In
Publisher
IEEE Computer Society
United States
Publication History
Author Tags
Qualifiers
- Article
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0