[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Radio Resource Allocation Techniques for Efficient Spectrum Access in Cognitive Radio Networks

Published: 01 January 2016 Publication History

Abstract

This paper provides an overview of cognitive radio (CR) networks, with focus on the recent advances in resource allocation techniques and the CR networks architectural design. The contribution of this work is threefold. First, a systematic way to study the resource allocation problem is presented; various design approaches are introduced, such as signal-to-interference-and-noise ratio (SINR) or transmission power-based, and centralized or distributed methods. Second, CR optimization methods are presented, accompanied by a comprehensive study of the resource allocation problem formulations. Furthermore, quality of service criteria of the physical or/and the medium access control layers are investigated. Third, challenges in spectrum assignment are discussed, focusing on dynamic spectrum allocation, spectrum aggregation and frequency mobility. Such approaches constitute an emerging trend in efficient spectrum sharing and affect the performance of resource allocation techniques. The open issues for future research in this area are finally discussed, including adaptability-reconfigurability, dual accessibility, and energy efficiency.

References

[1]
FCC, “ Notice of Proposed Rulemaking and Order”, Washington, DC, USA, Tech. Rep. ET Docket 03-222, Dec. 2003.
[2]
Report of the Spectrum Efficiency Working Group Federal Communications Commission Spectrum Policy Task Force, Washington, DC, USA, Nov. 2002.
[3]
K. N. Steadman, A. D. Rose, and T. T. N. Nguyen, “ Dynamic spectrum sharing detectors,” in Proc. IEEE DySPAN, 2007, pp. 276– 282.
[4]
M. Wellens, and P. Mähönen, “ Lessons learned from an extensive spectrum occupancy measurement campaign and a stochastic duty cycle model,” in Proc. IEEE TridentCom, 2009, pp. 1– 9.
[5]
V. Valenta, R. Maršalek, G. Baudoin, M. Villegas, M. Suarez, and F. Robert, “ Survey on spectrum utilization in Europe: Measurements, analysis and observations,” in Proc. CROWNCOM, 2010, pp. 1– 5.
[6]
G. Alnwaimi, K. Arshad, and K. Moessner, “ Dynamic spectrum allocation algorithm with interference management in co-existing networks,” IEEE Commun. Lett., vol. 15, no. 9, pp. 932– 934, Sep. 2011.
[7]
N. Nie, C. Comaniciu, and P. Agrawal, “ A game-theoretic approach to interference management in cognitive networks,” in Wireless Communications (The IMA Volumes of Mathematics and Its Applications) P. Agrawal, D. M. Andrews, P. J. Fleming, G. Yin, and L. Zhang, Eds.,  New York, NY, USA: Springer-Verlag, 2006.
[8]
M. M. Buddhikot, “ Understanding dynamic spectrum access: Models, taxonomy and challenges,” in Proc. IEEE DySPAN, 2007, pp. 649– 663.
[9]
F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “ NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey,” Comput. Netw., vol. 50, no. 13, pp. 2127– 2159, Sep. 2006.
[10]
Q. Zhao, and A. Swami, “ A survey of dynamic spectrum access: Signal processing and networking perspectives,” in Proc. IEEE ICASSP, 2007, pp. 1349– 1352.
[11]
Q. Zhao, and B. M. Sadler, “ A survey of dynamic spectrum access,” IEEE Signal Process. Mag., vol. 24, no. 3, pp. 79– 89, May 2007.
[12]
F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “ A survey on spectrum management in cognitive radio networks,” IEEE Commun. Mag., vol. 46, no. 4, pp. 40– 48, Apr. 2008.
[13]
J. Mitola, “ Cognitive radio,” Ph.D. dissertation, KTH, Stockholm, Sweden, Dec. 1998, Licentiate proposal.
[14]
E. Z. Tragos, S. Zeadally, A. G. Fragkiadakis, and V. A. Siris, “ Spectrum assignment in cognitive radio networks: A comprehensive survey,” IEEE Commun. Surveys Tuts., vol. 15, no. 3, pp. 1108– 1135 3rd Quart., 2013.
[15]
I. Christian, S. Moh, I. Chung, and J. Lee, “ Spectrum mobility in cognitive radio networks,” IEEE Commun. Mag., vol. 50, no. 6, pp. 114– 121, Jun. 2012.
[16]
W.-Y. Lee, and I. F. Akyildiz, “ Spectrum-aware mobility management in cognitive radio cellular networks,” IEEE Trans. Mobile Comput., vol. 11, no. 4, pp. 529– 542, Apr. 2012.
[17]
C. Cormio, and K. R. Chowdhury, “ A survey on MAC protocols for cognitive radio networks,” Ad Hoc Netw., vol. 7, no. 7, pp. 1315– 1329, Sep. 2009.
[18]
A. De Domenico, E. C. Strinati, and M. Di Benedetto, “ A survey on MAC strategies for cognitive radio networks,” IEEE Commun. Surveys Tuts., vol. 14, no. 1, pp. 21– 44 1st Quart., 2012.
[19]
A. Al-Habashna, O. A. Dobre, R. Venkatesan, and D. C. Popescu, “ Second-order cyclostationarity of mobile WiMAX and LTE OFDM signals and application to spectrum awareness in cognitive radio systems,” IEEE J. Sel. Topics Signal Process., vol. 6, no. 1, pp. 26– 42, Feb. 2012.
[20]
W.-Y. Lee, and I. F. Akyildiz, “ A spectrum decision framework for cognitive radio networks,” IEEE Trans. Mobile Comput., vol. 10, no. 2, pp. 161– 174, Feb. 2011.
[21]
R. Chen, J.-M. Park, and J. H. Reed, “ Defense against primary user emulation attacks in cognitive radio networks,” IEEE J. Sel. Areas Commun., vol. 26, no. 1, pp. 25– 37, Jan. 2008.
[22]
D. Ngo, C. Tellambura, and H. Nguyen, “ Resource allocation for OFDMA-based cognitive radio multicast networks with primary user activity consideration,” IEEE Trans. Veh. Technol., vol. 59, no. 4, pp. 1668– 1679, May 2010.
[23]
M. Cheung, V. Wong, and R. Schober, “ SINR-based random access for cognitive radio: Distributed algorithm and coalitional game,” IEEE Trans. Wireless Commun., vol. 10, no. 11, pp. 3887– 3897, Nov. 2011.
[24]
C. G. Yang, J. D. Li, and Z. Tian, “ Optimal power control for cognitive radio networks under coupled interference constraints: A cooperative game-theoretic perspective,” IEEE Trans. Veh. Technol., vol. 59, no. 4, pp. 1696– 1706, May 2010.
[25]
V. Tumuluru, P. Wang, D. Niyato, and W. Song, “ Performance analysis of cognitive radio spectrum access with prioritized traffic,” IEEE Trans. Veh. Technol., vol. 61, no. 4, pp. 1895– 1906, May 2012.
[26]
A. Alshamrani, X. S. Shen, and L.-L. Xie, “ QoS provisioning for heterogeneous services in cooperative cognitive radio networks,” IEEE J. Sel. Areas Commun., vol. 29, no. 4, pp. 819– 830, Apr. 2011.
[27]
Y. Xiao, and F. Hu, Cognitive Radio Network, New York, NY, USA: Taylor & Francis, 2009.
[28]
S. Bayhan, and F. Alagoz, “ Scheduling in centralized cognitive radio networks for energy efficiency,” IEEE Trans. Veh. Technol., vol. 62, no. 2, pp. 582– 595, Feb. 2013.
[29]
M. Hasegawa, H. Hirai, K. Nagano, H. Harada, and K. Aihara, “ Optimization for centralized and decentralized cognitive radio networks,” Proc. IEEE, vol. 102, no. 4, pp. 574– 584, Apr. 2014.
[30]
Y. Liang, L. Lai, and J. Halloran, “ Distributed cognitive radio network management via algorithms in probabilistic graphical models,” IEEE J. Sel. Areas Commun., vol. 29, no. 2, pp. 338– 347, Feb. 2011.
[31]
J.-A. Bazerque, and G. B. Giannakis, “ Distributed spectrum sensing for cognitive radio networks by exploiting sparsity,” IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1847– 1862, Mar. 2010.
[32]
J. Chunxiao, C. Yan, K. J. R. Liu, and R. Yong, “ Renewal-theoretical dynamic spectrum access in cognitive radio network with unknown primary behavior,” IEEE J. Sel. Areas Commun., vol. 31, no. 3, pp. 406– 416, Mar. 2013.
[33]
S. Min, X. Chunsheng, Z. Yanxiao, and C. Xiuzhen, “ Dynamic spectrum access: From cognitive radio to network radio,” IEEE Wireless Commun., vol. 19, no. 1, pp. 23– 29, Feb. 2012.
[34]
J. Jia, Q. Zhang, and X. Shen, “ HC-MAC: A hardware-constrained cognitive MAC for efficient spectrum management,” IEEE J. Sel. Areas Commun., vol. 21, no. 1, pp. 106– 117, Jan. 2008.
[35]
H. Su, and X. Zhang, “ Cross-layer based opportunistic MAC protocols for QoS provisionings over cognitive radio wireless networks,” IEEE J. Sel. Areas Commun., vol. 26, no. 1, pp. 118– 129, Jan. 2008.
[36]
H. Zheng, and L. Cao, “ Device-centric spectrum management,” in Proc. IEEE DySPAN, 2005, pp. 56– 65.
[37]
S. Chunhua, Z. Wei, and K. Ben, “ Cluster-based cooperative spectrum sensing in cognitive radio systems,” in Proc. IEEE ICC, 2007, pp. 2511– 2515.
[38]
M. Jia, Y. Wotao, L. Husheng, E. Hossain, and H. Zhu, “ Collaborative spectrum sensing from sparse observations in cognitive radio networks,” IEEE J. Sel. Areas Commun., vol. 29, no. 2, pp. 327– 337, Feb. 2011.
[39]
J. Huang, V. Subramanian, R. Berry, and R. Agrawal, “ Joint scheduling and resource allocation in uplink OFDM systems for broadband wireless access networks,” IEEE J. Sel. Areas Commun., vol. 27, no. 2, pp. 226– 234, Feb. 2009.
[40]
W. Wang, W. Wang, Q. Lu, and T. Peng, “ An uplink resource allocation scheme for OFDM-based cognitive radio networks,” Int. J. Commun. Syst., vol. 22, no. 5, pp. 603– 623, May 2009.
[41]
P. Mitran, L. Le, C. Rosenberg, and A. Girard, “ Resource allocation for downlink spectrum sharing in cognitive radio networks,” in Proc. IEEE VTC Fall, 2008, pp. 1– 5.
[42]
J. Huang, V. Subramanian, R. Agrawal, and R. Berry, “ Downlink scheduling and resource allocation for OFDM systems,” in Proc. CISS, 2006, pp. 1272– 1279.
[43]
R. Agrawal, V. Subramanian, and R. Berry, “ Joint scheduling and resource allocation in CDMA systems,” in Proc. WiOpt, Cambridge, U.K., 2004, pp. 24– 26.
[44]
M. H. Ahmed, “ Call admission control in wireless networks: A comprehensive survey,” IEEE Commun. Surveys Tuts., vol. 7, no. 1, pp. 50– 69 1st Quart., 2005.
[45]
S. Srinivasa, and S. A. Jafar, “ Cognitive radios for dynamic spectrum access—The throughput potential of cognitive radio: A theoretical perspective,” IEEE Commun. Mag., vol. 45, no. 5, pp. 73– 79, May 2007.
[46]
J. Mitola, “ Cognitive radio for flexible mobile multimedia communications,” in Proc. IEEE Int. Workshop Mobile Multimedia Commun., 1999, pp. 3– 10.
[47]
Y.-C. Liang, K.-C. Chen, G. Y. Li, and P. Mahonen, “ Cognitive radio networking and communications: An overview,” IEEE Trans. Veh. Technol., vol. 60, no. 7, pp. 3386– 3407, Sep. 2011.
[48]
A. Ghasemi, and E. Sousa, “ Collaborative spectrum sensing for opportunistic access in fading environments,” in Proc. IEEE DySPAN, 2005, pp. 131– 136.
[49]
G. Ganesan, and Y. Li, “ Agility improvement through cooperative diversity in cognitive radio,” in Proc. IEEE GLOBECOM, 2005, pp. 2505– 2509.
[50]
A. Goldsmith, S. A. Jafar, I. Maric, and S. Srinivasa, “ Breaking spectrum gridlock with cognitive radios: An information-theoretic perspective,” Proc. IEEE, vol. 97, no. 5, pp. 894– 914, May 2009.
[51]
T. Weiss, J. Hillenbrand, A. Krohn, and F. Jondral, “ Mutual interference in OFDM-based spectrum pooling systems,” in Proc. IEEE VTC, 2004, pp. 1873– 1877.
[52]
A. V. Oppenheim, and R. W. Schafer, Digital Signal Processing, Upper Saddle River, NJ, USA: Prentice-Hall, 1975.
[53]
B. Farhang-Boroujeny, and R. Kempter, “ Multicarrier communication techniques for spectrum sensing and communication in cognitive radios,” IEEE Commun. Mag., vol. 46, no. 4, pp. 80– 85, Apr. 2008.
[54]
Y. Xu, J. Lui, and D. Chiu, “ On oligopoly spectrum allocation game in cognitive radio networks with capacity constraints,” Comput. Netw., vol. 54, no. 6, pp. 925– 943, Jun. 2010.
[55]
A. Tajer, N. Prasad, and X. Wang, “ Beamforming and rate allocation in MISO cognitive radio networks,” IEEE Trans. Signal Process., vol. 58, no. 1, pp. 362– 377, Jan. 2010.
[56]
W. Wei, K. G. Shin, and W. Wenbo, “ Joint spectrum allocation and power control for multihop cognitive radio networks,” IEEE Trans. Mobile Comput., vol. 10, no. 7, pp. 1042– 1055, Jul. 2011.
[57]
Y. Wang, P. Ren, Q. Du, and C. Zhang, “ Optimal resource allocation for spectrum sensing based cognitive radio networks with statistical QoS guarantees,” Mobile Netw. Appl., vol. 17, no. 6, pp. 711– 720, Dec. 2012.
[58]
X. Chen, and C. Yuen, “ Efficient resource allocation in rateless coded MU-MIMO cognitive radio network with QoS provisioning and limited feedback,” IEEE Trans. Veh. Technol., vol. 62, no. 1, pp. 395– 399, Jan. 2013.
[59]
I. Wajid, M. Pesavento, Y. C. Eldar, and D. Ciochina, “ Robust downlink beamforming with partial channel state information for conventional and cognitive radio networks,” IEEE Trans. Signal Process., vol. 61, no. 14, pp. 3656– 3670, Jul. 2013.
[60]
L. Le, and E. Hossain, “ Resource allocation for spectrum underlay in cognitive radio networks,” IEEE Trans. Wireless Commun., vol. 7, no. 12, pp. 5306– 5315, Dec. 2008.
[61]
A. T. Hoang, and Y. Liang, “ Downlink channel assignment and power control for cognitive radio networks,” IEEE Trans. Wireless Commun., vol. 7, no. 8, pp. 3106– 3117, Aug. 2008.
[62]
D. T. Ngo, and T. Le-Ngoc, “ Distributed resource allocation for cognitive radio networks with spectrum-sharing constraints,” IEEE Trans. Veh. Technol., vol. 60, no. 7, pp. 3436– 3449, Sep. 2011.
[63]
T. S. Rappaport, Wireless Communications: Principles and Practice 2nd, Upper Saddle River, NJ, USA: Prentice-Hall, 2002.
[64]
S. Ghalib, and B. A. Ozgur, “ Performance analysis of CSMA-based opportunistic medium access protocol in cognitive radio sensor networks,” Ad Hoc Netw., vol. 15, pp. 4– 13, Apr. 2014.
[65]
N. Qiang, and C. C. Zarakovitis, “ Nash bargaining game theoretic scheduling for joint channel and power allocation in cognitive radio systems,” IEEE J. Sel. Areas Commun., vol. 30, no. 1, pp. 70– 81, Jan. 2012.
[66]
S. Wang, Z.-H. Zhou, M. Ge, and C. Wang, “ Resource allocation for heterogeneous cognitive radio networks with imperfect spectrum sensing,” IEEE J. Sel. Areas Commun., vol. 31, no. 3, pp. 464– 475, Mar. 2013.
[67]
A. T. Hoang, Y.-C. Liang, and M. H. Islam, “ Power control and channel allocation in cognitive radio networks with primary users' cooperation,” IEEE Trans. Mobile Comput., vol. 9, no. 3, pp. 348– 360, Mar. 2010.
[68]
H. R. Varian, Intermediate Microeconomics: A Modern Approach, New York, NY, USA: Norton, 1987.
[69]
J. Hou, J. Yang, and S. Papavassiliou, “ Intergration of pricing with call admission control to meet QoS requirements in cellular networks,” IEEE Trans. Parallel Distrib. Syst., vol. 13, no. 9, pp. 898– 910, Sep. 2002.
[70]
C. Peng, H. Zheng, and B. Y. Zhao, “ Utilization and fairness in spectrum assignment for opportunistic spectrum access,” Mobile Netw. Appl., vol. 11, no. 4, pp. 555– 576, May 2006.
[71]
P. Zhou, W. Yuan, W. Liu, and W. Cheng, “ Joint power and rate control in cognitive radio networks: A game-theoretical approach,” in Proc. IEEE ICC, 2008, pp. 3296– 3301.
[72]
S. K. Jayaweera, and T. Li, “ Dynamic spectrum leasing in cognitive radio networks via primary-secondary user power control games,” IEEE Trans. Wireless Commun., vol. 8, no. 6, pp. 3300– 3310, Jun. 2009.
[73]
T. Li, and S. K. Jayaweera, “ A novel primary secondary user power control game for cognitive radios,” in Proc. IEEE MILCOM, 2008, pp. 1– 7.
[74]
E.-V. Belmega, S. Lasaulce, and M. Debbah, “ A survey on energy-efficient communications,” in Proc. IEEE PIMRC Workshops, 2010, pp. 289– 294.
[75]
A. Akbari, M. A. Imran, and R. Tafazolli, “ Maximising average energy efficiency for two-user AWGN broadcast channel,” in Proc. FutureNetw, 2011, pp. 1– 8.
[76]
S. K. Jayaweera, G. Vazquez-Vilar, and C. Mosquera, “ Dynamic spectrum leasing: A new paradigm for spectrum sharing in cognitive radio networks,” IEEE Trans. Veh. Technol., vol. 59, no. 5, pp. 2328– 2339, Jun. 2010.
[77]
C. U. Saraydar, N. B. Mandayam, and D. J. Goodman, “ Efficient power control via pricing in wireless data networks,” IEEE Trans. Commun., vol. 50, no. 2, pp. 291– 303, Feb. 2002.
[78]
F. Meshkati, H. V. Poor, S. C. Schwartz, and N. B. Mandayam, “ An energy-efficient approach to power control and receiver design in wireless data networks,” IEEE Trans. Commun., vol. 53, no. 11, pp. 1885– 1894, Nov. 2005.
[79]
G. I. Tsiropoulos, D. G. Stratogiannis, H.-H. Chen, and P. G. Cottis, “ Utility-based probabilistic call admission control for complete fairness in wireless networks,” Int. J. Commun. Syst., vol. 1, no. 1, pp. 1099– 1131, Jul. 2012.
[80]
P. Fishburn, and A. Odlyzko, “ Dynamic behavior of differential pricing and quality of service options for the internet,” Decis. Support Syst., vol. 28, no. 1/2, pp. 123– 136, Mar. 2000.
[81]
K. Arrow, “ The theory of risk aversion,” in Aspects of the Theory of Risk Bearing, Helsinki, Finland: Yrjo Jahnssonin Sattio, 1965, pp. 90– 109, [Reprinted in: Essays in the Theory of Risk Bearing, Markham Publ. Co., Chicago, 1971].
[82]
N. Gatsis, A. G. Marques, and G. B. Giannakis, “ Utility-based power control for peer-to-peer cognitive radio networks with heterogeneous QoS constraints,” in Proc. IEEE ICASSP, 2008, pp. 2805– 2808.
[83]
N. Gatsis, A. Marques, and G. Giannakis, “ Power control for cooperative dynamic spectrum access networks with diverse QoS constraints,” IEEE Trans. Commun., vol. 58, no. 3, pp. 933– 934, Mar. 2010.
[84]
E. Dall' Anese, S.-J. Kim, G. B. Giannakis, and S. Pupolin, “ Power control for cognitive radio networks under channel uncertainty,” IEEE Trans. Wireless Commun., vol. 10, no. 10, pp. 3541– 3551, Oct. 2011.
[85]
F.-Y. Tsuo, W.-L. Lee, C.-Y. Wang, and H.-Y. Wei, “ Power control game with SINR-pricing in variable-demand wireless data networks,” in Proc. IEEE VTC, 2010, pp. 1– 5.
[86]
D. A. Schmidt, C. Shi, R. A. Berry, M. L. Honig, and W. Utschick, “ Pricing algorithms for power control and beamformer design in interference networks,” IEEE Signal Process. Mag., vol. 26, no. 5, pp. 53– 63, Sep. 2009.
[87]
Z. Liang, and W. T. Chee, “ Cognitive radio network duality and algorithms for utility maximization,” IEEE J. Sel. Areas Commun., vol. 31, no. 3, pp. 500– 513, Mar. 2013.
[88]
S. Stanczak, M. Wiczanowski, and H. Boche, Resource Allocation in Wireless Networks: Theory and Algorithms, Berlin, Germany: Springer-Verlag, 2006.
[89]
O. Ileri, D. Samardzija, T. Sizer, and N. B. Mandayam, “ Demand responsive pricing and competitive spectrum allocation via a spectrum server,” in Proc. IEEE DySPAN, 2005, pp. 194– 202.
[90]
D. Niyato, and E. Hossain, “ Spectrum trading in cognitive radio networks: A market-equilibrium-based approach,” IEEE Wireless Commun., vol. 15, no. 6, pp. 71– 80, Dec. 2008.
[91]
C. Yang, J. Tao, W. Chonggang, and Z. Lei, “ CRAC: Cognitive radio assisted cooperation for downlink transmissions in OFDMA-based cellular networks,” IEEE J. Sel. Areas Commun., vol. 30, no. 9, pp. 1614– 1622, Oct. 2012.
[92]
Y.-W. Chan, F.-T. Chien, R. Y. Chang, M.-K. Chang, and Y.-C. Chung, “ Spectrum sharing in multi-channel cooperative cognitive radio networks: A coalitional game approach,” Wireless Netw., vol. 19, no. 7, pp. 1553– 1562, Jan. 2013.
[93]
L. Yu, C. Liu, and W. Hu, “ Spectrum allocation algorithm in cognitive ad-hoc networks with high energy efficiency,” in Proc. ICGCS, 2010, pp. 349– 354.
[94]
G. Mengyao, and W. Shaowei, “ Fast optimal resource allocation is possible for multiuser OFDM-based cognitive radio networks with heterogeneous services,” IEEE Trans. Wireless Commun., vol. 11, no. 4, pp. 1500– 1509, Apr. 2012.
[95]
M. V. Nguyen, T. Q. Duong, C. S. Hong, S. Lee, and Y. Zhang, “ Optimal and sub-optimal resource allocation in multi-hop cognitive radio networks with primary user outage constraint,” IET Netw., vol. 1, no. 2, pp. 47– 57, Jun. 2012.
[96]
H. A. B. Salameh, “ Throughput-oriented channel assignment for opportunistic spectrum access networks,” Math. Comput. Model., vol. 53, no. 11/12, pp. 2108– 2118, Jun. 2011.
[97]
X. Kang, H. K. Garg, Y.-C. Liang, and R. Zhang, “ Optimal power allocation for OFDM-based cognitive radio with new primary transmission protection criteria,” IEEE Trans. Wireless Commun., vol. 9, no. 6, pp. 2066– 2075, Jun. 2010.
[98]
Z. Hasan, G. Bansal, E. Hossain, and V. K. Bhargava, “ Energy-efficient power allocation in OFDM-based cognitive radio systems: A risk-return model,” IEEE Trans. Wireless Commun., vol. 8, no. 12, pp. 6078– 6088, Dec. 2009.
[99]
E. Bedeer, O. A. Dobre, M. H. Ahmed, and K. Baddour, “ A multiobjective optimization approach for optimal link adaptation of OFDM-based cognitive radio systems with imperfect spectrum sensing,” IEEE Trans. Wireless Commun., vol. 13, no. 4, pp. 2339– 2351, Apr. 2014.
[100]
V. Vapnik, “ An overview of statistical learning theory,” IEEE Trans. Neural Netw., vol. 10, no. 5, pp. 988– 999, Sep. 1999.
[101]
Y. Tachwali, B. F. Lo, I. F. Akyildiz, and R. Agusti, “ Multiuser resource allocation optimization using bandwidth-power product in cognitive radio networks,” IEEE J. Sel. Areas Commun., vol. 31, no. 3, pp. 451– 463, Mar. 2013.
[102]
Z. Hasan, E. Hossain, C. Despins, and V. K. Bhargava, “ Power allocation for cognitive radios based on primary user activity in an OFDM system,” in Proc. IEEE GLOBECOM, 2008, pp. 1– 6.
[103]
E. Bedeer, O. Amin, O. A. Dobre, M. Ahmed, and K. Baddour, “ Energy-efficient power loading for OFDM-based cognitive radio systems with channel uncertainties,” IEEE Trans. Veh. Technol., vol. 64, no. 6, pp. 2672– 2677, Jun. 2015.
[104]
L. Akter, and B. Natarajan, “ Distributed approach for power and rate allocation to secondary users in cognitive radio networks,” IEEE Trans. Veh. Technol., vol. 60, no. 4, pp. 1526– 1538, May 2011.
[105]
D. I. Kim, L. B. Le, and E. Hossain, “ Joint rate and power allocation for cognitive radios in dynamic spectrum access environment,” IEEE Trans. Wireless Commun., vol. 7, no. 12, pp. 5517– 5527, Dec. 2008.
[106]
J. Tang, R. Hincapie, G. Xue, W. Zhang, and R. Bustamante, “ Fair bandwidth allocation in wireless mesh networks with cognitive radios,” IEEE Trans. Veh. Technol., vol. 59, no. 3, pp. 1487– 1496, Mar. 2010.
[107]
P. Thulasiramanz, J. Chen, and X. Shen, “ Multipath routing and max-min fair QoS provisioning under interference constraints in wireless multihop networks,” IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 5, pp. 716– 728, May 2011.
[108]
Z. Cai, S. Ji, J. He, L. Wei, and A. G. Bourgeois, “ Distributed and asynchronous data collection in cognitive radio networks with fairness consideration,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 8, pp. 2020– 2029, Aug. 2014.
[109]
D. Xu, E. Jung, and X. Liu, “ Efficient and fair bandwidth allocation in multichannel cognitive radio networks,” IEEE Trans. Mobile Comput., vol. 11, no. 8, pp. 1372– 1385, Aug. 2012.
[110]
R. Fan, H. Jiang, Q. Guo, and Z. Zhang, “ Joint optimal cooperative sensing and resource allocation in multichannel cognitive radio networks,” IEEE Trans. Veh. Technol., vol. 60, no. 2, pp. 722– 729, Feb. 2011.
[111]
T. Zhang, B. Wang, and Z. Wu, “ Spectrum assignment in infrastructure based cognitive radio networks,” in Proc. IEEE NAECON, 2009, pp. 69– 74.
[112]
F. P. Kelly, A. K. Maulloo, and D. Tan, “ Rate control for communication networks: Shadow prices, proportional fairness and stability,” J. Oper. Res. Soc., vol. 49, no. 3, pp. 237– 252, Mar. 1998.
[113]
J. Mo, and J. Walrand, “ Fair end-to-end window-based congestion control,” IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 556– 567, Oct. 2000.
[114]
R. Jain, D. Chiu, and W. Hawe, “ A quantitative measure of fairness and discrimination for resource allocation in shared systems”, Digit. Equip. Corp., Maynard, MA, USA, Tech. Rep. DEC-TR-301, 1984.
[115]
K. Hakim, S. K. Jayaweera, G. El-Howayek, and C. Mosquera, “ Efficient dynamic spectrum sharing in cognitive radio networks: Centralized Dynamic Spectrum Leasing (C-DSL),” IEEE Trans. Wireless Commun., vol. 9, no. 9, pp. 2956– 2967, Sep. 2010.
[116]
T. Jiang, H. Wang, and Y. Zhang, “ Modeling channel allocation for multimedia transmission over infrastructure based cognitive radio networks,” IEEE Syst. J., vol. 5, no. 3, pp. 417– 426, Sep. 2011.
[117]
D. N. Nguyen, and M. Krunz, “ Price-based joint beamforming and spectrum management in multi-antenna cognitive radio networks,” IEEE J. Sel. Areas Commun., vol. 30, no. 11, pp. 2295– 2305, Dec. 2012.
[118]
R. E. Irwin, A. B. MacKenzie, and L. A. DaSilva, “ Resource-minimized channel assignment for multi-transceiver cognitive radio networks,” IEEE J. Sel. Areas Commun., vol. 31, no. 3, pp. 442– 450, Mar. 2013.
[119]
X. Li, T. Drive, and S. A. R. Zekavat, “ Distributed channel assignment in cognitive radio networks,” in Proc. IWCMC, 2009, pp. 989– 993.
[120]
A. Plummer, and S. Biswas, “ Distributed spectrum assignment for cognitive networks with heterogeneous spectrum opportunities,” Wireless Commun. Mobile Comput., vol. 11, no. 9, pp. 1239– 1253, Sep. 2011.
[121]
L. Ding, T. Melodia, S. Batalama, J. Matyjas, and M. Medley, “ Cross-layer routing and dynamic spectrum allocation in cognitive radio ad hoc networks,” IEEE Trans. Veh. Technol., vol. 59, no. 4, pp. 1969– 1979, May 2010.
[122]
M. Shin, S. Lee, and Y.-A. Kim, “ Distributed channel assignment for multi-radio wireless networks,” in Proc. IEEE MASS, 2006, pp. 417– 426.
[123]
M. Gong, S. Midkiff, and S. Mao, “ Design principles for distributed channel assignment in wireless ad hoc networks,” in Proc. IEEE ICC, 2005, pp. 3401– 3406.
[124]
Q. Zhao, L. Tong, and A. Swami, “ Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: A POMDP framework,” IEEE J. Sel. Areas Commun., vol. 25, no. 3, pp. 589– 600, Apr. 2007.
[125]
Y. Chen, Q. Zhao, and A. Swami, “ Distributed spectrum sensing and access in cognitive radio networks with energy constraint,” IEEE Trans. Signal Process., vol. 57, no. 2, pp. 783– 797, Feb. 2009.
[126]
A. Nasipuri, J. Zhuang, and S. R. Das, “ A multichannel CSMA MAC protocol for multihop wireless networks,” in Proc. IEEE WCNC, 1999, pp. 1402– 1406.
[127]
J. P. R. Draves, and B. Zill, “ Routing in multiradio multihop wireless mesh networks,” in Proc. ACM MobiCom, 2004, pp. 114– 128.
[128]
J. So, and N. H. Vaidya, “ Multichannel MAC for ad hoc networks: Handling multichannel hidden terminals using a single transceiver,” in Proc. MobiHoc, 2004, pp. 222– 233.
[129]
A. Raniwala, and T. Chiueh, “ Architecture and algorithms for an IEEE 802.11-based multichannel wireless mesh network,” in Proc. IEEE INFOCOM, 2005, pp. 2223– 2234.
[130]
K. R. Chowdhury, and I. F. Akyildiz, “ Cognitive wireless mesh networks with dynamic spectrum access,” IEEE J. Sel. Areas Commun., vol. 26, no. 1, pp. 168– 181, Jan. 2008.
[131]
F. Akyildiz, X. Wang, and W. Wang, “ Wireless mesh networks: A survey,” Comput. Netw. J., vol. 47, no. 4, pp. 445– 487, Mar. 2005.
[132]
H. Shiang, and M. van der Schaar, “ Distributed resource management in multi-hop cognitive radio networks for delay sensitive transmission,” IEEE Trans. Veh. Technol., vol. 58, no. 2, pp. 941– 953, Feb. 2009.
[133]
Z. Ji, and K. J. R. Liu, “ Dynamic spectrum sharing: A game theoretical overview,” IEEE Commun. Mag., vol. 45, no. 5, pp. 88– 94, May 2007.
[134]
B. Wang, Y. Wu, and K. J. R. Liu, “ Game theory for cognitive radio networks: An overview,” Comput. Netw. J., vol. 54, no. 14, pp. 2537– 2561, Oct. 2010.
[135]
S. Buljore, et al., “ Architecture and enablers for optimized radio resource usage in heterogeneous wireless access networks: The IEEE 1900.4 Working Group,” IEEE Commun. Mag., vol. 47, no. 1, pp. 122– 129, Jan. 2009.
[136]
R. Etkin, A. Parekh, and D. Tse, “ Spectrum sharing for unlicensed bands,” IEEE J. Sel. Areas Commun., vol. 25, no. 3, pp. 517– 528, Apr. 2007.
[137]
C. Li, and J. Xie, “ Repeated game-inspired spectrum sharing for clustering cognitive ad hoc networks,” Int. J. Distrib. Sensor Netw., vol. 2013, pp. 514 037-1– 514 037-10, Jan. 2013.
[138]
M. Le Treust, and S. Lasaulce, “ A repeated game formulation of energy-efficient decentralized power control,” IEEE Trans. Wireless Commun., vol. 9, no. 9, pp. 2860– 2869, Sep. 2010.
[139]
W. Yuan, H. Leung, W. Cheng, S. Cheng, and B. Chen, “ Participation in repeated cooperative spectrum sensing: A game-theoretic perspective,” IEEE Trans. Wireless Commun., vol. 11, no. 3, pp. 1000– 1011, Mar. 2012.
[140]
J. W. Friedman, “ A non-cooperative equilibrium for supergames,” Rev. Econ. Stud., vol. 38, no. 1, pp. 1– 12, Jan. 1971.
[141]
I. Obara, “ Folk theorem with communication,” J. Econ. Theory, vol. 144, no. 1, pp. 120– 134, Jan. 2009.
[142]
B. Eraslan, D. Gozupek, and F. Alagoz, “ An auction theory based algorithm for throughput maximizing scheduling in centralized cognitive radio networks,” IEEE Commun. Lett., vol. 15, no. 7, pp. 734– 736, Jul. 2011.
[143]
M. Dong, G. Sun, X. Wang, and Q. Zhang, “ Combinatorial auction with time-frequency flexibility in cognitive radio networks,” in Proc. IEEE INFOCOM, 2012, pp. 2282– 2290.
[144]
D. Niyato, E. Hossain, and Z. Han, “ Dynamic spectrum access in IEEE 802.22-based cognitive wireless networks: A game theoretic model for competitive spectrum bidding and pricing,” IEEE Wireless Commun., vol. 16, no. 2, pp. 16– 23, Apr. 2009.
[145]
Y. Zhang, D. Niyato, P. Wang, and E. Hossain, “ Auction-based resource allocation in cognitive radio systems,” IEEE Commun. Mag., vol. 50, no. 11, pp. 108– 120, Nov. 2012.
[146]
Y. Zhang, C. Lee, D. Niyato, and P. Wang, “ Auction approaches for resource allocation in wireless systems: A survey,” IEEE Commun. Surveys Tuts., vol. 15, no. 3, pp. 1020– 1041 3rd Quart., 2013.
[147]
J. Huang, R. Berry, and M. L. Honig, “ Auction-based spectrum sharing,” Mobile Netw. Appl., vol. 11, no. 3, pp. 405– 418, Jun. 2006.
[148]
A. Wang, et al., “ Joint subcarrier and power allocation for physical layer security in cooperative OFDMA networks,” EURASIP J. Wireless Commun. Netw., vol. 2013, no. 1, pp. 193:1– 193:10, Apr. 2013.
[149]
Y. Liu, M. Tao, and J. Huang, “ An auction approach to distributed power allocation for multiuser cooperative networks,” IEEE Trans. Wireless Commun., vol. 12, no. 1, pp. 237– 247, Jan. 2013.
[150]
L. Yang, H. Kim, J. Zhang, M. Chiang, and C. W. Tan, “ Pricing-based decentralized spectrum access control in cognitive radio networks,” IEEE/ACM Trans. Netw., vol. 21, no. 2, pp. 522– 535, Apr. 2013.
[151]
A. Mas-Colell, M. D. Whinston, and J. R. Green, Microeconomic Theory, London, U.K.: Oxford Univ. Press, 1995.
[152]
V. Krishna, Auction Theory, San Diego, CA, USA: Academic, 2002.
[153]
H.-B. Chang, and K.-C. Chen, “ Auction-based spectrum management of cognitive radio networks,” IEEE Trans. Veh. Technol., vol. 59, no. 4, pp. 1923– 1935, May 2010.
[154]
B. Wang, K. J. R. Liu, and T. C. Clancy, “ Evolutionary game framework for behavior dynamics in cooperative spectrum sensing,” in Proc. IEEE GLOBECOM, 2008, pp. 1– 5.
[155]
B. Wang, K. J. R. Liu, and T. C. Clancy, “ Evolutionary cooperative spectrum sensing game: How to collaborate?,” IEEE Trans. Commun., vol. 58, no. 3, pp. 890– 900, Mar. 2010.
[156]
J. M. Smith, Evolution and the Theory of Games, Cambridge, U.K.: Cambridge Univ. Press, 1982.
[157]
J. W. Weibull, Evolutionary Game Theory, Cambridge, MA, USA: MIT Press, 1995.
[158]
H. Wu, et al., “ Distributed channel assignment and routing in multi-radio multi-channel multi-hop wireless networks,” IEEE J. Sel. Areas Commun., vol. 24, no. 11, pp. 1972– 1983, Nov. 2006.
[159]
D. Bertsekas, and R. Gallager, Data Networks, Upper Saddle River, NJ, USA: Prentice-Hall, 1987.
[160]
L.-C. Wang, C.-W. Wang, and C.-J. Chang, “ Modeling and analysis for spectrum handoffs in cognitive radio networks,” IEEE Trans. Mobile Comput., vol. 11, no. 9, pp. 1499– 1513, Sep. 2012.
[161]
S. Gao, L. Qian, and D. R. Vaman, “ Distributed energy efficient spectrum access in wireless cognitive radio sensor networks,” in Proc. IEEE Wireless Commun. Netw. Conf., 2008, pp. 1442– 1447.
[162]
A. M. Wyglinski, “ Effects of bit allocation on non-contiguous multicarrier-based cognitive radio transceivers,” in Proc. IEEE VTC Fall, 2006, pp. 1– 5.
[163]
S. Chen, and A. M. Wyglinski, “ Efficient spectrum utilization via cross-layer optimization in distributed cognitive radio networks,” Comput. Commun., vol. 32, no. 18, pp. 1931– 1943, Dec. 2009.
[164]
D. Chen, Q. Zhang, and W. Jia, “ Aggregation aware spectrum assignment in cognitive ad-hoc networks,” in Proc. Int. Conf. Cogn. Radio Oriented Wireless Netw. Commun., 2008, pp. 1– 6.
[165]
Q. Zhang, J. Jia, and X. Shen, “ Optimal spectrum sensing decision for hardware-constrained cognitive networks,” in Cognitive Wireless Communication Networks, New York, NY, USA: Springer-Verlag, 2007.
[166]
QinetiQ, Ltd., “ A study of the provision of aggregation of frequency to provide wider bandwidth services”, Office Commun., London, U.K., Aug. 2006, QINETIQ/06/01773.
[167]
X. Li, D. Wang, and J. McNair, “ Residual energy aware channel assignment in cognitive radio sensor networks,” in Proc. IEEE Wireless Commun. Netw. Conf., 2011, pp. 398– 403.
[168]
P. Setoodeh, and S. Haykin, “ Robust transmit power control for cognitive radio,” Proc. IEEE, vol. 97, no. 5, pp. 915– 939, May 2009.
[169]
J. W. Mwangoka, K. B. Letaief, and Z. Cao, “ Joint power control and spectrum allocation for cognitive radio networks via pricing,” Phys. Commun., vol. 2, no. 1/2, pp. 103– 115, Mar.–Jun. 2009.
[170]
T. Jiang, D. Grace, and Y. Liu, “ Cognitive radio spectrum sharing schemes with reduced spectrum sensing requirements,” in Proc. IET Semin. Cogn. Radio Softw. Defined Radios—Technol. Tech., 2008, pp. 1– 5.
[171]
D. Grace, J. Chen, T. Jiang, and P. D. Mitchell, “ Using cognitive radio to deliver ‘Green’ communications,” in Proc. CROWNCOM, 2009, pp. 1– 6.
[172]
I. F. Akyildiz, W.-Y. Lee, and K. R. Chowdhury, “ CRAHNs: Cognitive radio ad hoc networks,” Ad Hoc Netw., vol. 7, no. 5, pp. 810– 836, Jul. 2009.
[173]
M. E. Monteiro, “ Cognitive radio: Survey on communication protocols, spectrum decision issues, future research directions,” Wireless Netw. J., vol. 18, no. 2, pp. 147– 164, Feb. 2012.
[174]
L. Yang, L. Cao, and H. Zheng, “ Proactive channel access in dynamic spectrum network,” in Proc. CROWNCOM, 2007, pp. 482– 486.
[175]
C. Clancy, J. Hecker, and E. Stuntebeck, “ Applications of machine learning to cognitive radio networks,” IEEE Wireless Commun., vol. 14, no. 4, pp. 47– 52, Aug. 2007.
[176]
L. R. Rabiner, “ A tutorial on hidden Markov models and selected applications in speech recognition,” Proc. IEEE, vol. 77, no. 2, pp. 257– 285, Feb. 1989.
[177]
S. Haykin, Neural Networks: A Comprehensive Foundation, Upper Saddle River, NJ, USA: Prentice-Hall, 1998.
[178]
K. Tsagkaris, A. Katidiotis, and P. Demestichas, “ Neural network-based learning schemes for cognitive radio systems,” Comput. Commun., vol. 31, no. 14, pp. 3394– 3404, Sep. 2008.
[179]
D. Goldberg, Genetic Algorithms in Search, Optimization, Machine Learning, Reading, MA, USA: Addison-Wesley, 1989.
[180]
M. Di Felice, K. Chowdhury, C. Wu, W. Meleis, and L. Bononi, “ Learning-based spectrum selection in cognitive radio ad hoc networks,” in Proc. IEEE WWIC, 2010, pp. 133– 145.
[181]
A. Anandukumar, N. Michael, and A. Tang, “ Opportunistic spectrum access with multiple users: Learning under competition,” in Proc. IEEE INFOCOM, 2010, pp. 1– 9.
[182]
G. Zhao, G. Y. Li, C. Yang, and J. Ma, “ Proactive detection of spectrum holes in cognitive radio,” in Proc. IEEE ICC, 2009, pp. 1– 5.
[183]
G. Zhao, G. Y. Li, and C. Yang, “ Proactive detection of spectrum opportunities in primary systems with power control,” IEEE Trans. Wireless Commun., vol. 8, no. 9, pp. 4815– 4823, Sep. 2009.
[184]
K.-C. Chen, et al., “ Routing for cognitive radio networks consisting of opportunistic links,” Wireless Commun. Mobile Comput., vol. 10, no. 4, pp. 451– 466, Apr. 2010.
[185]
I. Pefkianakis, S. H. Wong, and S. Lu, “ SAMER: Spectrum aware mesh routing in cognitive radio networks,” in Proc. IEEE DySPAN, 2008, pp. 1– 5.

Cited By

View all

Index Terms

  1. Radio Resource Allocation Techniques for Efficient Spectrum Access in Cognitive Radio Networks
              Index terms have been assigned to the content through auto-classification.

              Recommendations

              Comments

              Please enable JavaScript to view thecomments powered by Disqus.

              Information & Contributors

              Information

              Published In

              cover image IEEE Communications Surveys & Tutorials
              IEEE Communications Surveys & Tutorials  Volume 18, Issue 1
              Firstquarter 2016
              898 pages

              Publisher

              IEEE Press

              Publication History

              Published: 01 January 2016

              Qualifiers

              • Research-article

              Contributors

              Other Metrics

              Bibliometrics & Citations

              Bibliometrics

              Article Metrics

              • Downloads (Last 12 months)0
              • Downloads (Last 6 weeks)0
              Reflects downloads up to 20 Jan 2025

              Other Metrics

              Citations

              Cited By

              View all
              • (2024)Two Decades of Research Progress in Resource Allocation for PLC Systems: From Core Concepts to FrontiersIEEE Communications Surveys & Tutorials10.1109/COMST.2024.338090126:3(1710-1747)Online publication date: 1-Jul-2024
              • (2024)Resource allocation in V2X communicationPhysical Communication10.1016/j.phycom.2024.10235164:COnline publication date: 17-Jul-2024
              • (2024)A novel resource allocation method based on supermodular game in EH-CR-IoT networksAd Hoc Networks10.1016/j.adhoc.2023.103309152:COnline publication date: 1-Jan-2024
              • (2024)A novel dynamic channel allocation protocol based on data traffic characterization model in CR-IoT networkTelecommunications Systems10.1007/s11235-024-01205-787:3(625-638)Online publication date: 1-Nov-2024
              • (2024)Robust transmission design for active IRS-aided multiuser MIMO cognitive radio systems with non-linear energy harvesting modelsTelecommunications Systems10.1007/s11235-024-01117-686:1(155-171)Online publication date: 1-May-2024
              • (2023)Improved artificial bee colony algorithm-based channel allocation scheme in low earth orbit satellite downlinksComputers and Electrical Engineering10.1016/j.compeleceng.2023.108838110:COnline publication date: 1-Sep-2023
              • (2022)Transform-Domain-Based Cognitive Radio Networks for Harsh Interference EnvironmentsIEEE Network: The Magazine of Global Internetworking10.1109/MNET.001.210059036:4(78-85)Online publication date: 1-Jul-2022
              • (2022)Fairness-oriented computation offloading for cloud-assisted edge computingFuture Generation Computer Systems10.1016/j.future.2021.10.004128:C(132-141)Online publication date: 9-Apr-2022
              • (2021)Study on Spectrum Allocation and Optimization of Wireless Communication Networks Based on SFOAWireless Communications & Mobile Computing10.1155/2021/22629632021Online publication date: 1-Jan-2021
              • (2021)QoE-Fairness Tradeoff Scheme for Dynamic Spectrum Allocation Based on Deep Reinforcement LearningProceedings of the 5th International Conference on Computer Science and Application Engineering10.1145/3487075.3487137(1-7)Online publication date: 19-Oct-2021
              • Show More Cited By

              View Options

              View options

              Media

              Figures

              Other

              Tables

              Share

              Share

              Share this Publication link

              Share on social media