[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
review-article

Resource allocation mechanisms in cloud computing: : a systematic literature review

Published: 06 November 2020 Publication History

Abstract

Cloud computing offers a vast number of processing opportunities and heterogeneous resources and meets the requirements of numerous applications at various levels. Thus, the allocation and management of resources are vital in cloud computing. Resource allocation is a technique in which the available resources such as central processing unit, random‐access memory, storage, and network bandwidth in cloud data centres are divided among users in a way that facilitates resource utilisation, provider profit, and user satisfaction. Integration and interaction with other modules of the resource management system, security, privacy, fairness, non‐fragmentation of resources, resource utilisation, provider profit, user satisfaction, reducing energy consumption, load balancing, flexibility, scalability, availability, improvement the number and time of virtual machine migrations, and the number of overloaded resources are considered as challenges for the resource allocation mechanism. A systematic resource allocation survey with innovations in resource management system architecture, categorising mechanisms, addressing the challenges, and issues is presented. In addition to introducing the existing resource allocation mechanisms, other similar survey papers have been reviewed. Finally, there are some suggested topics for future work.

9. References

[1]
Goncalves G.E. Endo P.T. Damasceno T. et al.: ‘Resource allocation in clouds: concepts, tools and research challenges ’ in Goncalves G.E. Endo P.T. Cordeiro T. et al. (Eds.): ‘Minicursos do SBRC ’ Chapter 5 (SBC, 2011 ), pp. 197–240
[2]
Pillai P.S. Rao S.: ‘Resource allocation in cloud computing using the uncertainty principle of game theory ’, IEEE Syst. J., 2014, 10, (2 ), pp. 1–12
[3]
Ankita V.: ‘A survey on various resource allocation policies in cloud computing environment ’, Int. J. Res. Eng. Technol., 2013, 2, (5 ), pp. 760–763
[4]
Jafari Navimipour N. Rahmani A.M. Habibizad Navin A. et al.: ‘Resource discovery mechanisms in grid systems: a survey ’, J. Netw. Comput. Appl., 2014, 41, (1 ), pp. 389–410
[5]
Ghomi E.J. Rahmani A.M.: ‘Load‐balancing algorithms in cloud computing: a survey ’, J. Netw. Comput. Appl., 2017, 88, pp. 50–71
[6]
Mohammadi V. Rahmani A.M. Darwesh A.M. et al.: ‘Trust‐based recommendation systems in internet of things: a systematic literature review ’, Human‐centric Comput. Inf. Sci., 2019, 9, (1 ), pp. 1–61
[7]
Safari R.M. Rahmani A.M. Alizadeh S.H.: ‘User behavior mining on social media: a systematic literature review ’, Multimed. Tools Appl., 2019, 78, pp. 33747–33804
[8]
Hosseini Shirvani M. Rahmani A.M. Sahafi A.: ‘A survey study on virtual machine migration and server consolidation techniques in DVFS‐enabled cloud datacenter: taxonomy and challenges ’, J. King Saud Univ., Comput. Inf. Sci., 2018, 32, pp. 267–286
[9]
Jafarnejad Ghomi E. Rahmani A.M. Qader N.N.: ‘Applying queue theory for modeling of cloud computing: a systematic review ’, Concurr. Comput., 2019, 31, (17 ), pp. 1–31
[10]
Shojaiemehr B. Rahmani A.M. Qader N.N.: ‘Cloud computing service negotiation: a systematic review ’, Comput. Stand. Interfaces, 2018, 55, pp. 196–206
[11]
Souri A. Navimipour N.J. Rahmani A.M.: ‘Formal verification approaches and standards in the cloud computing: a comprehensive and systematic review ’, Comput. Stand. Interfaces, 2018, 58, pp. 1–22
[12]
Asghari P. Rahmani A.M. Javadi H.H.S.: ‘Internet of things applications: a systematic review ’, Comput. Netw., 2019, 148, pp. 241–261
[13]
Irandoost M.A. Rahmani A.M. Setayeshi S.: ‘Mapreduce data skewness handling: a systematic literature review ’, Int. J. Parallel Program., 2019, 47, pp. 907–950
[14]
Mohamadi Bahram Abadi R. Rahmani A.M. Alizadeh S.H.: ‘Server consolidation techniques in virtualized data centers of cloud environments: a systematic literature review ’, Softw. ‐ Pract. Exp., 2018, 48, (9 ), pp. 1688–1726
[15]
Asghari P. Rahmani A.M. Javadi H.H.S.: ‘Service composition approaches in IoT: a systematic review ’, J. Netw. Comput. Appl., 2018, 120, pp. 61–77
[16]
Shadroo S. Rahmani A.M.: ‘Systematic survey of big data and data mining in internet of things ’, Comput. Netw., 2018, 139, pp. 19–47
[17]
Mell P. Grance T.: ‘The NIST definition of cloud computing (draft) ’. NIST Spec. Publ. 800, 2011, p. 7
[18]
Buyya R. Yeo C.S. Venugopal S.: ‘Market‐oriented cloud computing: vision, hype, and reality for delivering IT services as computing utilities ’. Proc. 10th IEEE Int. Conf. on High Performance Computing and Communications, HPCC 2008, Shanghai, China, 2008, pp. 5–13
[19]
Vakilinia S. Ali M.M. Qiu D.: ‘Modeling of the resource allocation in cloud computing centers ’, Comput. Netw., 2015, 91, pp. 453–470
[20]
Parikh S.M.: ‘A survey on cloud computing resource allocation techniques ’. 2013 Nirma University Int. Conf. on Engineering (NUiCONE 2013), Ahmedabad, India, 2013, pp. 1–5
[21]
Mohamaddiah M.H. Abdullah A. Subramaniam S. et al.: ‘A survey on resource allocation and monitoring in cloud computing ’, Int. J. Mach. Learn. Comput., 2014, 4, (1 ), pp. 31–38
[22]
Alnajdi S. Dogan M. Al‐Qahtani E.: ‘A survey on resource allocation in cloud computing ’, Int. J. Cloud Comput. Serv. Archit., 2016, 6, (5 ), pp. 1–11
[23]
Nadu T. Anuradha V.P.: ‘A survey on resource allocation strategies in cloud computing ’. IEEE ICICES2014, Chennai, India, 2014, (978)
[24]
Kumar D. Shankersingh A.: ‘A survey on resource allocation techniques in cloud computing ’. Int. Conf. on Computing, Communication and Automation (ICCCA2015), Noida, India, 2015, pp. 655–660
[25]
Vinothina V. Lecturer S. Sridaran R.: ‘A survey on resource allocation strategies in cloud computing ’, Int. J. Adv. Comput. Sci. Appl., 2012, 3, (6 ), pp. 97–104
[26]
Bharti K. Kaur K.: ‘A survey of resource allocation techniques in cloud computing ’, Int. J. Adv. Comput. Eng. Commun. Technol., 2014, 3, (2 ), pp. 31–35
[27]
Hussain H. Ur S. Malik R. et al.: ‘A survey on resource allocation in high performance distributed computing systems ’, Parallel Comput., 2013, 39, (11 ), pp. 709–736
[28]
Huang L. Chen H.S. Hu T.T.: ‘Survey on resource allocation policy and job scheduling algorithms of cloud computing ’, J. Softw., 2013, 8, (2 ), pp. 480–487
[29]
Madni S.H.H. Latiff M.S.A. Coulibaly Y. et al.: ‘Recent advancements in resource allocation techniques for cloud computing environment: a systematic review ’, Cluster Comput., 2017, 20, (3 ), pp. 2489–2533
[30]
Yousafzai A. Gani A. Noor R.M. et al.: ‘Cloud resource allocation schemes: review, taxonomy, and opportunities ’, Knowl. Inf. Syst., 2017, 50, (2 ), pp. 347–381
[31]
B. M.L. C. S.B.: ‘Systematic literature review on resource allocation and resource scheduling in cloud computing ’, Int. J. Adv. Inf. Technol., 2016, 6, (4 ), pp. 1–15
[32]
Tayal S. Gupta N. Goyal D. et al.: ‘A review paper on resource allocation in cloud environment ’, Int. J. Eng. Sci. Comput., 2019, 13, (4 ), pp. 641–646
[33]
Sonkar S.K. Kharat M.U.: ‘A review on resource allocation and VM scheduling techniques and a model for efficient resource management in cloud computing environment ’. Proc. 2016 Int. Conf. on ICT in Business, Industry, and Government, ICTBIG 2016, Indore, India, 2016
[34]
Liu L. Fan Q. Fu D.: ‘A survey of resource allocation in the mobile cloud computing environment ’, Int. J. Comput. Appl. Technol., 2018, 57, (4 ), pp. 281–290
[35]
Ealiyas A. Jeno Lovesum S.P.: ‘Resource allocation and scheduling methods in cloud‐a survey ’. Proc. 2nd Int. Conf. on Computing Methodologies and Communication, ICCMC 2018, Erode, India, 2018, pp. 601–604
[36]
Ramanathan S. Shivaraman N. Suryasekaran S. et al.: ‘A survey on time‐sensitive resource allocation in the cloud continuum ’, J. ACM, 2018, 37, (4 ), p. 15
[37]
Farokhi S.: ‘Towards an SLA‐based service allocation in multi‐cloud environments ’. Proc. 14th IEEE/ACM Int. Symp. on Cluster Cloud, Grid Computing CCGrid 2014, Chicago, Illinois, USA, 2014, pp. 591–594
[38]
Yuan X. Min G. Yang L.T. et al.: ‘A game theory‐based dynamic resource allocation strategy in geo‐distributed datacenter clouds ’, Future Gener. Comput. Syst., 2017, 76, pp. 63–72
[39]
Yin B. Wang Y. LuomingMeng X.: ‘A multi‐dimensional resource allocation algorithm in cloud computing ’, J. Inf. Comput. Sci., 2012, 9, (11 ), pp. 3021–3028
[40]
Mochizuki K. Kuribayashi S.: ‘Evaluation of optimal resource allocation method for cloud computing environments with limited electric power capacity ’. Int. Conf. on Network‐Based Information Systems, Tirana, Albania, 2011, pp. 1–5
[41]
Di S. Wang C.: ‘Dynamic optimization of multiattribute resource allocation in self‐organizing clouds ’, IEEE Trans. Parallel Distrib. Syst., 2013, 24, (3 ), pp. 464–478
[42]
Midya S. Roy A. Majumder K. et al.: ‘Multi‐objective optimization technique for resource allocation and task scheduling in vehicular cloud architecture: a hybrid adaptive nature inspired approach ’, J. Netw. Comput. Appl., 2018, 103, pp. 58–84
[43]
Gong S. Yin B. Zheng Z. et al.: ‘Adaptive multivariable control for multiple resource allocation of service‐based systems in cloud computing ’, IEEE Access, 2019, 7, pp. 13817–13831
[44]
Khethavath P. Thomas J. Chan‐tin E. et al.: ‘Introducing a distributed cloud architecture with efficient resource discovery and optimal resource allocation ’. 2013 IEEE Ninth World Congress on Services, Santa Clara, CA, 2013, pp. 386–392.
[45]
Goudarzi H. Pedram M.: ‘Multi‐dimensional SLA‐based resource allocation for multi‐tier cloud computing systems ’. IEEE 4th Int. Conf. on Cloud Computing, Washington, DC, USA, 2011, pp. 324–331
[46]
Wu L. Kumar S. Buyya R.: ‘SLA‐based resource allocation for software as a service provider (SaaS) in CloudComputing environments ’. 11th IEEE/ACM Int. Symp. on Cluster, Cloud and Grid Computing, Newport Beach, California, USA, 2011, pp. 195–204
[47]
Huber N. Brosig F. Kounev S.: ‘Model‐based self‐adaptive resource allocation in virtualized environments ’. SEAMS '11: Proceedings of the 6th Int. Symposium on Software Engineering for Adaptive and Self‐Managing Systems Waikiki, Honolulu, Hawaii, USA, 2011, ACM 978‐1‐4503‐0575‐4
[48]
Ruan Z. Wu R. Chen F. et al.: ‘An auction based profit‐aware resource allocation mechanism for cloud computing ’. 4th Int. Conf. on Information Science and Control Engineering (ICISCE), Changsha, China, 2017, pp. 154–158
[49]
Xia Y. Hong H. Lin G. et al.: ‘A secure and efficient cloud resource allocation scheme with trust evaluation mechanism based on combinatorial double auction ’, KSII Trans. Internet Inf. Syst., 2017, 11, (9 ), pp. 4197–4219
[50]
Kumar N. Saxena S.: ‘A preference‐based resource allocation in cloud computing systems ’, Procedia Comput. Sci., 2015, 57, pp. 104–111
[51]
Samimi P. Teimouri Y. Mukhtar M.: ‘A combinatorial double auction resource allocation model in cloud computing ’, Inf. Sci., 2014, 357, pp. 201–216
[52]
Li L. Liu Y. Liu K. et al.: ‘Pricing in combinatorial double auction‐based grid allocation model ’, J. China Univ. Posts Telecommun., 2009, 16, (3 ), pp. 59–65
[53]
Zaman S. Grosu D.: ‘Combinatorial auction‐based allocation of virtual machine instances in clouds ’, J. Parallel Distrib. Comput., 2013, 73, (4 ), pp. 495–508
[54]
Lin W. Wang J.Z. Liang C. et al.: ‘A threshold‐based dynamic resource allocation scheme for cloud computing ’, Procedia Eng., 2011, 23, pp. 695–703
[55]
Ryan T. Choon Y.: ‘Multi‐tier resource allocation for data‐intensive computing ’, Big Data Res., 2015, 1, pp. 1–7
[56]
Wang X. Sun J. Li H. et al.: ‘A reverse auction based allocation mechanism in the cloud computing environment ’, Appl. Math. Inf. Sci., 2013, 84, (1 ), pp. 75–84
[57]
Li J. Qiu M. Niu J.‐W. et al.: ‘Adaptive resource allocation for pre‐empt able jobs in cloud systems ’. 10th Int. Conf. on Intelligent System Design and Application, Cairo, Egypt, 2011, pp. 31–36
[58]
Nathani A. Chaudhary S. Somani G.: ‘Policy based resource allocation in Iaas cloud ’, Future Gener. Comput. Syst., 2012, 28, (1 ), pp. 94–103
[59]
Sun J. Wang X. Huang M.: ‘An intelligent resource allocation mechanism in the cloud computing environment ’. Third Int. Conf. on Information Science and Technology, Yangzhou, China, 2013
[60]
Kang Z. Wang H.: ‘A novel approach to allocate cloud resource with different performance traits ’. IEEE 10th Int. Conf. on Services Computing A, Santa Clara, California, USA, 2013
[61]
Klemperer P.: ‘Auctions: theory and practice ’ (Princeton University Press, Princeton, NJ, USA, 2004 )
[62]
Jung G. Sim K.M.: ‘Agent‐based adaptive resource allocation on the cloud computing environment ’. Int. Conf. on Parallel Processing Workshops, Taipei, Taiwan, 2016, pp. 347–353
[63]
Fujiwara I. Aida K. Ono I.: ‘Applying double‐sided combinational auctions to resource allocation in cloud computing ’. 10th Annual Int. Symp. on Applications and the Internet, Seoul, South Korea, 2010, pp. 7–14
[64]
Lin W. Lin G. Wei H.: ‘Dynamic auction mechanism for cloud resource allocation ’. 10th IEEE/ACM Int. Conf. on Cluster, Cloud and Grid Computing Dynamic, Melbourne, Australia, 2010, pp. 591–592
[65]
You X. Xu X. Wan J. et al.: ‘RAS‐M: resource allocation strategy based on market mechanism in cloud computing ’. Fourth ChinaGrid Annual Conf., Yantai, China, 2009
[66]
Yanggratoke R. Wuhib F. Stadler R.: ‘Gossip‐based resource allocation for green computing in large clouds ’. 7th Int. Conf. on Network and Service Management, Paris, France, 2011
[67]
Zhang Q. Zhu Q. Boutaba R.: ‘Dynamic resource allocation for spot markets in cloud computing environments ’. Fourth IEEE Int. Conf. on Utility and Cloud Computing, Victoria, Canada, 2011
[68]
Tafsiri S.A. Yousefi S.: ‘Combinatorial double auction‐based resource allocation mechanism in cloud computing market ’, J. Syst. Softw., 2017, 137, pp. 322–324
[69]
Zhang J. Yang X. Xie N. et al.: ‘An online auction mechanism for time‐varying multidimensional resource allocation in clouds ’, Future Gener. Comput. Syst., 2020, 111, pp. 27–38
[70]
Sherzer E. Levy H.: ‘Resource allocation in the cloud with unreliable resources ’, Perform. Eval., 2020, 137, pp. 1–15
[71]
Babaioff M. Mansour Y. Nisan N. et al.: ‘ERA: a framework for economic resource allocation for the cloud ’. ACM 26th Int. Conf. on World Wide Web Companion, Republic and Canton of Geneva, Switzerland, 2017, pp. 635–642
[72]
Zhang W. Liu J. Song Y. et al.: ‘Dynamic resource allocation based on user experience in virtualized servers ’, Procedia Eng., 2011, 15, pp. 3780–3784
[73]
Zhang F. Ge J. Li Z. et al.: ‘A load‐aware resource allocation and task scheduling for the emerging cloudlet system ’, Future Gener. Comput. Syst., 2018, 87, pp. 438–456
[74]
Liu D. Sui X. Li L. et al.: ‘A cloud service adaptive framework based on reliable resource allocation ’, Future Gener. Comput. Syst., 2018, 89, pp. 455–463
[75]
Jia H. Liu X. Di X. et al.: ‘Security strategy for virtual machine allocation in cloud computing ’, Procedia Comput. Sci., 2019, 147, pp. 140–144
[76]
Zhang X. Wu T. Chen M. et al.: ‘Energy‐aware virtual machine allocation for cloud with resource reservation ’, J. Syst. Softw., 2019, 147, pp. 147–161
[77]
Ruan X. Chen H. Tian Y. et al.: ‘Virtual machine allocation and migration based on performance‐to‐power ratio in energy‐efficient clouds ’, Future Gener. Comput. Syst., 2019, 100, pp. 380–394
[78]
Joseph C.T. Chandrasekaran P.K.: ‘IntMA: dynamic interaction‐aware resource allocation for containerized microservices in cloud environments ’, J. Syst. Archit., 111, 2020, p. 101785
[79]
Beloglazov A. Abawajy J. Buyya R.: ‘Energy‐aware resource allocation heuristics for efficient management of data centers for cloud computing ’, Future Gener. Comput. Syst., 2012, 28, (5 ), pp. 755–768
[80]
Omara F.A. Khattab S.M. Sahal R.: ‘Optimum resource allocation of database in cloud computing ’, Egypt. Inf. J., 2014, 15, (1 ), pp. 1–12
[81]
Hassan M.M. Alamri A.: ‘Virtual machine resource allocation for multimedia cloud: a nash bargaining approach ’, Procedia Comput. Sci., 2014, 34, pp. 571–576
[82]
Myerson R.B.: ‘Game theory ’ (Harvard University Press, Cambridge, MA, USA, 2013 )
[83]
Maguluri S.T. Srikant R. Ying L.: ‘Heavy traffic optimal resource allocation algorithms for cloud computing clusters ’, Perform. Eval., 2014, 81, (2 ), pp. 20–39
[84]
Singh H.: ‘Reserve based approach for effective resource provisioning in cloud computing ’, Int. J. Adv. Res. Comput. Sci. Softw. Eng., 2014, 4, (9 ), pp. 526–529
[85]
Al‐haj S. Al‐shaer E. Watson I.B.M.T.J.: ‘Security‐aware resource allocation in clouds ’. IEEE 10th Int. Conf. on Services Computing, Santa Clara, CA, USA, 2013
[86]
Dou W. Xu X. Liu X. et al.: ‘A resource co‐allocation method for load‐balance scheduling over big data platforms ’, Future Gener. Comput. Syst., 2017, 86, pp. 1064–1075
[87]
Suri P.K. Goyal H.: ‘Stochastic simulator for optimal cloud resource allocation in a heterogeneous environment ’, Int. J. Comput. Appl., 2014, 101, (2 ), pp. 9–13
[88]
Shahdi‐Pashaki S. Teymourian E. Kayvanfar V. et al.: ‘Group technology‐based model and cuckoo optimization algorithm for resource allocation in cloud computing ’, IFAC‐PapersOnLine, 2015, 28, (3 ), pp. 1140–1145
[89]
Eawna M.H. Mohammed S.H. El‐Horbaty E.‐S.M.: ‘Hybrid algorithm for resource provisioning of multi‐tier cloud computing ’, Procedia Comput. Sci., 2015, 65, pp. 682–690
[90]
Yu R. Jiang C. Xu X. et al.: ‘Resources allocation in virtualized systems based on try‐before‐buy approach ’, Procedia Environ. Sci., 2011, 11, pp. 193–199
[91]
Zhang Z. Wang H. Xiao L. et al.: ‘A statistical based resource allocation scheme in cloud ’. Int. Conf. on Cloud and Service Computing, Hong Kong, China, 2011
[92]
Hadji M. Louati W. Zeghlache D.: ‘Constrained pricing for cloud resource allocation ’. IEEE Int. Symp. on Network Computing and Applications, Cambridge, Massachusetts, USA, 2011
[93]
Sahal R. Khattab S.M. Omara F.A.: ‘GPSO: an improved search algorithm for resource allocation in cloud databases ’. ACS Int. Conf. on Computer Systems and Applications (AICCSA), Ifrane,Morocco, 2013, pp. 1–8
[94]
Hadji M. Zeghlache D.: ‘Minimum cost maximum flow algorithm for dynamic resource allocation in clouds ’. IEEE Fifth Int. Conf. on Cloud Computing, Honolulu, Hawaii, USA, 2012, pp. 876–882
[95]
Lee G. Tolia N. Ranganathan P. et al.: ‘Topology‐aware resource allocation for data‐intensive workloads ’. ACM SIGCOMM Computer Communication Review, New Delhi, India, 2010, pp. 1–5
[96]
Dutreilh X. Kirgizov S. Melekhova O. et al.: ‘Using reinforcement learning for autonomic resource allocation in clouds: towards a fully automated workflow ’. ICAS 2011 Seventh Int. Conf. on Autonomic And Autonomous Systems, Venice/ Mestre, Italy, 2011, (c), pp. 67–74
[97]
Li Z. Chu T. Kolmanovsky I.V. et al.: ‘Cloud resource allocation for cloud‐based automotive applications ’, Mechatronics, 2017, 50, pp. 1–10
[98]
Luo J. Zhang Z. Wu Q.: ‘A novel virtual machine allocation model based on utility maximization in cloud environment ’. Third Int. Conf. on Cyberspace Technology (CCT 2015), Beijing, China, 2015, pp. 1–5
[99]
Hou L. Zheng K. Chatzimisios P. et al.: ‘A continuous‐time Markov decision process‐based resource allocation scheme in vehicular cloud for mobile video services ’, Comput. Commun., 2018, 118, pp. 140–147
[100]
Thein T. Myo M.M. Parvin S. et al.: ‘Reinforcement learning based methodology for energy‐efficient resource allocation in cloud data centers ’, J. King Saud Univ., Comput. Inf. Sci., 2018, Open Access, pp. 1–13.
[101]
Win T.R. Yee T.T. Htoon E.C.: ‘Optimized resource allocation model in cloud computing system ’. Int. Conf. on Advanced Information Technologies, ICAIT 2019, Yangon, Myanmar, 2019, pp. 49–54
[102]
Kim T. Choi W.: ‘Optimal cloud computing resource allocation for centralized radio access networks ’. 2019 Int. Conf. on Electronics, Information, and Communication (ICEIC), Auckland, New Zealand, 2019, pp. 1–2
[103]
Mengistu T. Che D. Lu S.: ‘Multi‐objective resource mapping and allocation for volunteer cloud computing ’. 2019 IEEE 12th Int. Conf. on Cloud Computing (CLOUD), Milan, Italy, 2019, pp. 344–348
[104]
Guo Y. Mi Z. Yang Y. et al.: ‘Efficient network resource preallocation on demand in multitenant cloud systems ’, IEEE Syst. J., 2019, 13, (4 ), pp. 4027–4038
[105]
Ni W. Zhang Y.: ‘An optimal strategy for resource utilization in cloud data centers ’, IEEE Access, 2019, 7, pp. 158095–158112
[106]
Alhassan S. Abdulghani M.: ‘A bio‐inspired algorithm for virtual machines allocation in public clouds ’, Procedia Comput. Sci., 2019, 151, (2018 ), pp. 1072–1077
[107]
Bouterse B. Perros H.: ‘Performance analysis of the reserve capacity policy for dynamic VM allocation in a SaaS environment ’, Simul. Model. Pract. Theory, 2019, 93, pp. 293–304
[108]
Li C. Sun H. Tang H. et al.: ‘Adaptive resource allocation based on the billing granularity in edge‐cloud architecture ’, Comput. Commun., 2019, 145, pp. 29–42
[109]
Afrin M. Jin J. Rahman A. et al.: ‘Multi‐objective resource allocation for edge cloud based robotic workflow in smart factory ’, Future Gener. Comput. Syst., 2019, 97, pp. 119–130
[110]
Raei H. Ilkhani E. Nikooghadam M.: ‘SeCARA: A security and cost‐aware resource allocation method for mobile cloudlet systems ’, Ad Hoc Netw., 2019, 86, pp. 103–118
[111]
Niño‐Mora J.: ‘Resource allocation and routing in parallel multi‐server queues with abandonments for cloud profit maximization ’, Comput. Oper. Res., 2019, 103, pp. 221–236
[112]
Tang H. Li C. Bai J. et al.: ‘Dynamic resource allocation strategy for latency‐critical and computation‐intensive applications in cloud–edge environment ’, Comput. Commun., 2019, 134, pp. 70–82
[113]
Soltanshahi M. Asemi R. Shafiei N.: ‘Energy‐aware virtual machines allocation by krill herd algorithm in cloud data centers ’, Heliyon, 2019, 5, (7), p. e02066
[114]
Goswami(Mukherjee) B. Sarkar J. Saha S. et al.: ‘ALVEC: auto‐scaling by Lotka Volterra elastic cloud: a QoS aware non linear dynamical allocation model ’, Simul. Model. Pract. Theory, 2019, 93, pp. 262–292
[115]
Ziafat H. Babamir S.M.: ‘A hierarchical structure for optimal resource allocation in geographically distributed clouds ’, Future Gener. Comput. Syst., 2019, 90, pp. 539–568
[116]
Yu H. Yang J. Wang H. et al.: ‘Towards predictable performance via two‐layer bandwidth allocation in cloud datacenter ’, J. Parallel Distrib. Comput., 2019, 126, pp. 34–47
[117]
Zhang Q. Gui L. Hou F. et al.: ‘Dynamic task offloading and resource allocation for mobile‐edge computing in dense cloud RAN ’, IEEE Internet Things J., 2020, 7, (4 ), pp. 3282–3299
[118]
Xavier T.C.S. Santos I.L. Delicato F.C. et al.: ‘Collaborative resource allocation for cloud of things systems ’, J. Netw. Comput. Appl., 2020, 159, p. 102592
[119]
Wu X. Wang H. Wei D. et al.: ‘ANFIS with natural language processing and gray relational analysis based cloud computing framework for real time energy efficient resource allocation ’, Comput. Commun., 2020, 150, pp. 122–130
[120]
Bhardwaj T. Upadhyay H. Sharma S.C.: ‘Autonomic resource allocation mechanism for service‐based cloud applications ’. 2019 Int. Conf. on Computing, Communication, and Intelligent Systems (ICCCIS) Autonomic, Greater Noida, India, 2020, pp. 183–187

Cited By

View all
  • (2023)Breaking the traditional: a survey of algorithmic mechanism design applied to economic and complex environmentsNeural Computing and Applications10.1007/s00521-023-08647-135:22(16193-16222)Online publication date: 1-Aug-2023

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image IET Software
IET Software  Volume 14, Issue 6
December 2020
163 pages
EISSN:1751-8814
DOI:10.1049/sfw2.v14.6
Issue’s Table of Contents

Publisher

John Wiley & Sons, Inc.

United States

Publication History

Published: 06 November 2020

Author Tags

  1. computer centres
  2. resource allocation
  3. cloud computing
  4. virtual machines
  5. security of data

Author Tags

  1. resource allocation mechanism
  2. cloud computing
  3. systematic literature review
  4. heterogeneous resources
  5. central processing unit
  6. cloud data centres
  7. user satisfaction
  8. resource utilisation
  9. overloaded resources
  10. systematic resource allocation survey
  11. resource management system architecture
  12. virtual machine migrations

Qualifiers

  • Review-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Breaking the traditional: a survey of algorithmic mechanism design applied to economic and complex environmentsNeural Computing and Applications10.1007/s00521-023-08647-135:22(16193-16222)Online publication date: 1-Aug-2023

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media