[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Multi‐instance multi‐label learning of natural scene images: : via sparse coding and multi‐layer neural network

Published: 18 December 2017 Publication History

Abstract

The classification of natural scene images is multi‐instance multi‐label (MIML) for many labels that exist in a natural scene image. The traditional method of solving MIML is to degenerate it into single‐instance single‐label learning (SISL). However, the precision of the method could decrease due to information loss during the degeneration process. How to reasonably solve the MIML problem is key to obtaining high accuracy in this research area. An MIML algorithm based on instances via combining sparse coding with a deep neural network is proposed. First, an instance‐based sparse representation with dictionary learning is adopted. Second, an MIML description model based on a deep network is proposed, which can realise parameter self‐learning in combination with sparse representations. Third, the residuals of the sparse representation are introduced to the deep neural network. The results of the experiments show that the method outperforms a number of state‐of‐the‐art approaches.

7 References

[1]
Zhou, Z., Zhang, M.: ‘Multi‐instance multi‐label learning with application to scene classification’, Adv. Neural Inf. Process. Syst., 2007, 19, pp. 1609–1616
[2]
Zhou, Z.H., Zhang, M.L., Huang, S.J., et al: ‘Multi‐instance multi‐label learning’, Artif. Intell., 2012, 176, (1), pp. 2291–2320
[3]
Dietterich, T.G., Lathrop, R.H., Lozano‐Pérez, T.: ‘Solving the multiple instance problem with axis‐parallel rectangles’, Artif. Intell., 1997, 89, pp. 31–71
[4]
Zhang, M.‐L., Zhang, K.: ‘Multi‐label learning by exploiting label dependency’. Proc. 16th ACM SIGKDD Int. Conf. Knowledge discovery and data mining ‐ KDD'10, 2010, pp. 999–1008
[5]
Maron, O., Ratan, A.L.: ‘Multiple‐instance learning for natural scene classification’. Proc. 15th Int. Conf. Machine Learning, 1998, pp. 341–349
[6]
Zhang, Q., Goldman, S.A.: ‘EM‐DD: an improved multiple‐instance learning technique’, NIPS, 2002, 14, pp. 1073–1080
[7]
Mason, L., Baxter, J., Bartlett, P., et al: ‘Boosting algorithms as gradient descent in function space’, Adv. Neural Inf. Process. Syst., 1999, 12, (April), pp. 512–518
[8]
Wang, J., Zucker, J.‐D.: ‘Solving multiple‐instance problem: a lazy learning approach’. Proc. 17th Int. Conf. Machine Learning, 2000, (1994), pp. 1119–1125
[9]
Xi, I., Bergadano, F.: ‘Learning single and multiple instance decision trees for computer security applications’ (2000, February)
[10]
Blockeel, H., Page, D., Srinivasan, A.: ‘Multi‐instance tree learning’, Proc. 22nd Int. Conf. Machine Learning, 2005, pp. 57–64
[11]
Zhang, M.L., Zhou, Z.H.: ‘Improve multi‐instance neural networks through feature selection’, Neural Process. Lett., 2004, 19, (1), pp. 1–10
[12]
Zhou, Z., Zhang, M.: ‘Neural networks for multi‐instance learning’. Int. Conf. Intelligent Information Technologies, 2002, pp. 455–459
[13]
Zhang, M., Zhou, Z.: ‘Adapting RBF neural networks to multi‐instance learning’, Neural Process. Lett., 2006, 23, (1), pp. 1–26
[14]
Chevaleyre, Y., Zucker, J.‐D.: ‘A framework for learning rules from multiple instance data’, 2003, pp. 49–60
[15]
Andrews, S., Hofmann, T., Tsochantaridis, I.: ‘Multiple instance learning with generalized support vector machines’, AAAI, 2002, 15, (2), pp. 561–568
[16]
Chen, Y., Wang, J.Z.: ‘Image categorization by learning and reasoning with regions’, J. Mach. Learn. Res., 2004, 5, pp. 913–939
[17]
Zhou, Z.: ‘On the relation between multi‐instance learning and semi‐supervised learning’, 2007, (1997)
[18]
Gärtner, T., Flach, P.A., Kowalczyk, A., et al: ‘Multi‐instance kernels’. Proc. Nineteenth Int. Conf. Machine Learning, 2002, (Mi), pp. 179–186
[19]
Cheung, P.‐M., Kwok, J.T.: ‘A regularization framework for multiple‐instance learning’, Proc. 23rd Int. Conf. Mach. Learn. ACM, 2006, 23, (148), pp. 193–200
[20]
Kwok, J.T., Cheung, P.M.: ‘Marginalized multi‐instance kernels’. Int. Joint Conf. Artificial Intelligence (IJCAI), 2007, pp. 901–906
[21]
Fung, G., Dundar, M., Krishnapuram, B., et al: ‘Multiple instance learning for computer aided diagnosis’, 2006
[22]
Zhou, Z.‐H., Zhang, M.: ‘Ensembles of multi‐instance learners’, Lect. Notes Artif. Intell. (Subseries Lect. Notes Comput. Sci.), 2003, 2837, pp. 492–502
[23]
Xu, X., Frank, E.: ‘Logistic regression and boosting for labeled bags of instances’. Proc. PacificAsia Conf. Knowledge Discovery and Data Mining, 2004, pp. 272–281
[24]
Schapire, R.E., Singer, Y.: ‘BoosTexter: a boosting‐based system for text categorization’, Mach. Learn, 2000, 39, (2–3), pp. 135–168
[25]
Chen, Y., Bi, J., Wang, J.Z., et al: ‘MILES: multiple‐instance learning via embedded instance selection’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (12), pp. 1–18
[26]
Boutell, M.R., Luo, J., Shen, X., et al: ‘Learning multi‐label scene classification’, Pattern Recognit., 2004, 37, (9), pp. 1757–1771
[27]
Nguyen, N.: ‘A new SVM approach to multi‐instance multi‐label learning’. Proc. ‐ IEEE Int. Conf. Data Mining (ICDM), 2010, pp. 384–392
[28]
Li, Y.‐X., Ji, S., Kumar, S., et al: ‘Drosophila gene expression pattern annotation through multi‐instance multi‐label learning’, IEEE/ACM Trans. Comput. Biol. Bioinforma., 2012, 9, (1), pp. 98–112
[29]
Elisseeff, A.: ‘Kernel methods for multi‐labelled classification and categorical regression problems’, Adv. Neural Inf. Process., 2001, 2, pp. 681–687
[30]
Godbole, S., Sarawagi, S.: ‘Discriminative methods for multi‐labeled classification’, Lect. Notes Comput. Sci., 2004, 3056, pp. 22–30
[31]
Cesa‐Bianchi, N., Gentile, C., Zaniboni, L.: ‘Hierarchical classification: combining Bayes with SVM’. Proc. 23rd Int. Conf. Machine Learning – ICML ‘06, 2006, pp. 177–184
[32]
Liu, Y., Jin, R., Yang, L.: ‘Semi‐supervised multi‐label learning by constrained non‐negative matrix factorization’. Proc. Natl. Conf. Artificial Intelligence, 2006, vol. 21, (1), p. 421
[33]
Yu, K., Yu, S., Tresp, V.: ‘Multi‐label informed latent semantic indexing’. Proc. 28th Annual Int. ACM, 2005, pp. 258–265
[34]
Zhang, Y., Zhou, Z.‐H.: ‘Multilabel dimensionality reduction via dependence maximization’, ACM Trans. Knowl. Discov. Data, 2010, 4, (3), pp. 1–21
[35]
Zhang, M.L., Zhou, Z.H.: ‘Multi‐instance clustering with applications to multi‐instance prediction’, Appl. Intell., 2009, 31, (1), pp. 47–68
[36]
Zhang, M.: ‘M3MIML: a maximum margin method for multi‐instance multi‐label learning’. IEEE/Int. Conf. Data Mining, 2008, pp. 688–697
[37]
Zhang, M.L.: ‘A k‐nearest neighbor based multi‐instance multi‐label learning algorithm’. Proc. – Int. Conf. Tools with Artificial Intelligence (ICTAI), 2010, vol. 2, pp. 207–212
[38]
Yang, C., Lozano‐Perez, T.: ‘Image database retrieval with multiple‐instance learning techniques’. Proc. 16th Int. Conf. Data Engineering 2000, 2000, pp. 233–243
[39]
Jiang, Y., Zhou, Z. H.: ‘SOM ensemble‐based image segmentation’, Neural Process. Lett., 2004, 20, (3), pp. 171–178
[40]
Kohonen, T.: ‘The self‐organizing map’, Neurocomputing, 1998, 21, (1–3), pp. 1–6
[41]
Zhou, Z.‐H., Zhang, M., Chen, K.‐J.: ‘A novel bag generator for image database retrieval with multi‐instance learning techniques’. Proc. Int. Conf. Tools with Artificial Intelligence, 2003, pp. 565–569
[42]
Aharon, M., Elad, M., Bruckstein, A.: ‘K‐SVD: an algorithm for designing overcomplete dictionaries for sparse representation’, IEEE Trans. Signal Process., 2006, 54, (11), pp. 4311–4322
[43]
Sajjad, M., Mehmood, I., Baik, S.W.: ‘Sparse coded image super‐resolution using K‐SVD trained dictionary based on regularized orthogonal matching pursuit’, Biomed. Mater. Eng., 2015, 26, (September), pp. S1399–S1407
[44]
Song, X., Liu, Z., Yang, X., et al: ‘A parameterized fuzzy adaptive K‐SVD approach for the multi‐classes study of pursuit algorithms’, Neurocomputing, 2014, 123, pp. 131–139
[45]
Wang, S., Jiao, L., Yang, S., et al: ‘SAR image target recognition via complementary spatial pyramid coding’, Neurocomputing, 2016, 196, pp. 125–132
[46]
Chen, Z., Chi, Z., Fu, H., et al: ‘Multi‐instance multi‐label image classification: a neural approach’, Neurocomputing, 2013, 99, pp. 298–306
[47]
Wu, J.S., Huang, S.J., Zhou, Z.H.: ‘Genome‐wide protein function prediction through multi‐instance multi‐label learning’, IEEE/ACM Trans. Comput. Biol. Bioinform., 2014, 11, (5), pp. 891–902
[48]
Zhang, M., Wang, Z.: ‘MimlRbf: RBF neural networks for multi‐instance multi‐label learning’, Neurocomputing., 2009, 72, (16), pp. 3951–3956
[49]
Glorot, X., Bengio, Y.: ‘Understanding the difficulty of training deep feedforward neural networks’. Proc. 13th Int. Conf. Artificial Intelligence and Statistics, 2010, vol. 9, pp. 249–256
[50]
Salton, G.: ‘Automatic text processing: the transformation’, Anal. Retr. Inf. Comput., 1989, 14, p. 15
[51]
Yang, Y., Pedersen, J.O.: ‘A comparative study on feature selection in text categorization’. Proc. 14th Int. Conf. Machine Learning, 1997, pp. 412–420
[52]
Lahrache, S., El Qadi, A., El Ouazzani, R.: ‘Bag‐of‐features for image memorability evaluation’, IET Comput. Vis., 2016, 10, (6), pp. 577–584
[53]
Triguero, I., Vens, C.: ‘Labelling strategies for hierarchical multi‐label classification techniques’, Pattern Recognit., 2015, 56, pp. 170–183

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image IET Computer Vision
IET Computer Vision  Volume 12, Issue 3
April 2018
131 pages
EISSN:1751-9640
DOI:10.1049/cvi2.v12.3
Issue’s Table of Contents

Publisher

John Wiley & Sons, Inc.

United States

Publication History

Published: 18 December 2017

Author Tags

  1. image coding
  2. learning (artificial intelligence)
  3. multilayer perceptrons
  4. image representation

Author Tags

  1. multiinstance multilabel learning
  2. natural scene images
  3. sparse coding
  4. multilayer neural network
  5. MIML algorithm
  6. information loss
  7. degeneration process
  8. deep neural network
  9. instance-based sparse representation
  10. dictionary learning
  11. MIML description model
  12. parameter self-learning

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media