[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Obstacle‐transformer: : A trajectory prediction network based on surrounding trajectories

Published: 21 October 2022 Publication History

Abstract

Recurrent Neural Network, Long Short‐Term Memory, and Transformer have made great progress in predicting the trajectories of moving objects. Although the trajectory element with the surrounding scene features has been merged to improve performance, there still exist some problems to be solved. One is that the time series processing models will increase the inference time with the increase of the number of prediction sequences. Another problem is that the features cannot be extracted from the scene's image and point cloud in some situations. Therefore, an Obstacle‐Transformer is proposed to predict trajectory in a constant inference time. An ‘obstacle’ is designed by the surrounding trajectory rather than images or point clouds, making Obstacle‐Transformer more applicable in a wider range of scenarios. Experiments are conducted on ETH and UCY datasets to verify the performance of our model.

References

[1]
Hu, Y., et al.: Robot policy improvement with natural evolution strategies for stable nonlinear dynamical system. IEEE Trans. Cybern., 1–13 (2022). https://doi.org/10.1109/tcyb.2022.3192049
[2]
Hu, Y., et al.: Design and control of a highly redundant rigid‐flexible coupling robot to assist the COVID‐19 oropharyngeal‐swab sampling. IEEE Rob. Autom. Lett. 7(2), 1856–1863 (2021). https://doi.org/10.1109/lra.2021.3062336
[3]
Nelder, J.A., Wedderburn, R.W.: Generalized linear models. J. Roy. Stat. Soc. 135(3), 370–384 (1972). https://doi.org/10.2307/2344614
[4]
QuinoneroCandela, J., Rasmussen, C.E.: A unifying view of sparse approximate Gaussian process regression. J. Mach. Learn. Res. 6, 1939–1959 (2005)
[5]
Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent Neural Network Regularization. arXiv preprint arXiv:14092329 (2014)
[6]
Hochreiter, S., Schmidhuber, J.: Long short‐term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735
[7]
Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst., 30 (2017)
[8]
Giuliari, F., et al.: Transformer networks for trajectory forecasting. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 10335–10342. IEEE (2021)
[9]
Alahi, A., et al.: Social lstm: human trajectory prediction in crowded spaces. Comput. Vis. Pattern Recognit. (2016)
[10]
Quinonero‐Candela, J., Rasmussen, C.E.: A unifying view of sparse approximate Gaussian process regression. J. Mach. Learn. Res. 6, 1939–1959 (2005)
[11]
Williams, C.K.: Prediction with Gaussian processes: from linear regression to linear prediction and beyond. In: Learning in Graphical Models, pp. 599–621. Springer (1998)
[12]
Stoffer, D.S., Tyler, D.E., McDougall, A.J.: Spectral analysis for categorical time series: scaling and the spectral envelope. Biometrika 80(3), 611–622 (1993). https://doi.org/10.1093/biomet/80.3.611
[13]
Akaike, H.: Fitting autoregressive models for prediction. Ann. Inst. Stat. Math. 21(1), 243–247 (1969). https://doi.org/10.1007/bf02532251
[14]
Kumar, N., et al.: Air pollution prediction using recurrent neural network, long short‐term memory and hybrid of convolutional neural network and long short‐term memory models. J. Comput. Theor. Nanosci. 17(9‐10), 4580–4584 (2020). https://doi.org/10.1166/jctn.2020.9283
[15]
Yao, H.Y., Wan, W.G., Li, X.: End‐to‐end pedestrian trajectory forecasting with transformer network. ISPRS Int. J. Geo‐Inf. 11(1), 44 (2022). https://doi.org/10.3390/ijgi11010044
[16]
Rae, J.W., et al.: Compressive Transformers for Long‐Range Sequence Modelling. arXiv preprint arXiv:191105507 (2019)
[17]
Beltagy, I., Peters, M.E., Cohan, A.: Longformer: The Long‐Document Transformer. arXiv preprint arXiv:200405150 (2020)
[18]
Zhou, H., et al.: Informer: beyond efficient transformer for long sequence time‐series forecasting. In: Proceedings of AAAI (2021)
[19]
LealTaixé, L., PonsMoll, G., Rosenhahn, B.: Everybody needs somebody: modeling social and grouping behavior on a linear programming multiple people tracker. In: International Conference on Computer Vision (2011)
[20]
Alahi, A., Ramanathan, V., FeiFei, L.: Socially‐aware large‐scale crowd forecasting. Comput. Vis. Pattern Recognit. (2014)
[21]
Fernando, T., et al.: Soft + Hardwired Attention: An Lstm Framework for Human Trajectory Prediction and Abnormal Event Detection (2017). arXiv: Computer Vision and Pattern Recognition
[22]
Gupta, A., et al.: Social gan: socially acceptable trajectories with generative adversarial networks. Comput. Vis. Pattern Recognit. (2018)
[23]
Vemula, A., Muelling, K., Oh, J.: Social attention: modeling attention in human crowds. arXiv: Robotics (2017)
[24]
Zhao, X., et al.: A spatial‐temporal attention model for human trajectory prediction. IEEE CAA J Autom Sinica 7(4), 965–974 (2020). https://doi.org/10.1109/jas.2020.1003228
[25]
Sadeghian, A., et al.: Sophie: an attentive gan for predicting paths compliant to social and physical constraints. Comput. Vis. Pattern Recognit. (2019)
[26]
Salzmann, T., et al.: Trajectron++: Multi‐Agent Generative Trajectory Forecasting With Heterogeneous Data For Control (2020)
[27]
Wang, J., et al.: Point‐wise motion learning for large‐scale lidar point clouds sequences. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4419–4428 (2022)
[28]
Peri, N., et al.: Forecasting from lidar via future object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17202–17211 (2022)
[29]
Pellegrini, S., et al.: You’ll never walk alone: modeling social behavior for multi‐target tracking. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 261–268. IEEE (2009)
[30]
Lerner, A., Chrysanthou, Y., Lischinski, D.: Crowds by example. In: Computer Graphics Forum, vol. 26, pp. 655–664. Wiley Online Library (2007)
[31]
Liang, J., et al.: Peeking into the future: predicting future person activities and locations in videos. Comput. Vis. Pattern Recognit. (2019)
[32]
Li, J., et al.: Scale‐aware fast r‐cnn for pedestrian detection. IEEE Trans. Multimed. 20(4), 985–996 (2017). https://doi.org/10.1109/tmm.2017.2759508

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image IET Cyber-Systems and Robotics
IET Cyber-Systems and Robotics  Volume 5, Issue 1
March 2023
175 pages
EISSN:2631-6315
DOI:10.1049/csy2.v5.1
Issue’s Table of Contents
This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

Publisher

John Wiley & Sons, Inc.

United States

Publication History

Published: 21 October 2022

Author Tags

  1. deep‐learning
  2. trajectory prediction
  3. transformer

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media