[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Highly accurate millimeter wave channel estimation in massive MIMO system

Published: 15 February 2023 Publication History

Abstract

Accurate channel state information (CSI) is extremely crucial to realize high‐accurate hybrid precoding, in millimeter wave communication systems. In order to improve the CSI estimation performance, several traditional channel estimators have been developed by exploiting the sparse or low‐rank property, whilst they bring huge channel training overhead and computational complexity. In this work, based on jointly sparse and low‐rank property of massive multiple input multiple output (MIMO) channel, one non‐convex mmWave channel estimation problem is formulated and a novel scheme to acquire one accurate CSI estimation result with greatly reduced training overhead is proposed. Specifically, the non‐convex problem is reformulated as two simple sub‐problems, by exploiting the alternating direction method of multipliers (ADMM) technique. Based on the low‐rank characteristic, one fast gradient descent matrix completion algorithm is developed to accurately solve the first sub‐problem. On this basis, the compressed sensing (CS) technique to acquire the accurate CSI estimation matrix is further utilized. Numerical simulation validates that the method could achieve the much higher channel estimation accuracy, yet only incurs the lower overhead compared with the traditional scheme.

Graphical Abstract

Numerical simulations validate that our method could achieve the much higher channel estimation accuracy, yet only incurs the lower overhead compared with the traditional scheme.

References

[1]
Ghosh, A., Maeder, A., Baker, M., Chandramouli, D.: 5G evolution: A view on 5G cellular technology beyond 3GPP release 15. IEEE Access 7, 127639–127651 (2019)
[2]
Chen, W.C.: 5g mmwave technology design challenges and development trends. In: 2020 International Symposium on VLSI Design, Automation and Test (VLSI‐DAT), pp. 1–4. IEEE, Piscataway (2020)
[3]
Rappaport, T.S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al.: Millimeter wave mobile communications for 5g cellular: It will work. IEEE Access. 1, 335–349 (2013)
[4]
Lodro, Z., Shah, N., Mahar, E., Tirmizi, S.B., Lodro, M.: Mmwave novel multiband microstrip patch antenna design for 5g communication. In: 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), pp. 1–4. IEEE, Piscataway (2019)
[5]
Pi, Z., Khan, F.: An introduction to millimeter‐wave mobile broadband systems. IEEE Commun. Mag. 49(6), 101–107 (2011)
[6]
Rangan, S., Rappaport, T.S., Erkip, E.: Millimeter‐wave cellular wireless networks: potentials and challenges. Proc. IEEE 102(3), 366–385 (2014)
[7]
Liu, Y., Wang, C.X., Huang, J., Sun, J., Zhang, W.: Novel 3‐d nonstationary mmwave massive mimo channel models for 5g high‐speed train wireless communications. IEEE Trans. Veh. Technol. 68(3), 2077–2086 (2019)
[8]
Roh, W., Seol, J.Y., Park, J., Lee, B., Lee, J., Kim, Y., et al.: Millimeter‐wave beamforming as an enabling technology for 5g cellular communications: theoretical feasibility and prototype results. IEEE Commun. Mag. 52(2), 106–113 (2014)
[9]
Marzetta, T.L.: Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wireless Commun. 9, 3590–3600 (2010)
[10]
Choi, J., Love, D.J., Bidigare, P.: Downlink training techniques for fdd massive mimo systems: open‐loop and closed‐loop training with memory. IEEE J. Sel. Top. Signal Process. 8(5), 802–814 (2014)
[11]
Björnson, E., Larsson, E.G., Marzetta, T.L.: Massive mimo: ten myths and one critical question. IEEE Commun. Mag. 54(2), 114–123 (2016)
[12]
Tang, M.F., Chen, C.C., Su, B.: Downlink path‐based precoding in fdd massive mimo systems without csi feedback. In: 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), pp. 1–5. IEEE, Piscataway (2016)
[13]
Ugurlu, U., Wichman, R., Ribeiro, C.B., Wijting, C.: A multipath extraction‐based csi acquisition method for fdd cellular networks with massive antenna arrays. IEEE Trans. Wireless Commun. 15(4), 2940–2953 (2016)
[14]
Adhikary, A., Nam, J., Ahn, J.Y., Caire, G.: Joint spatial division and multiplexing–the large‐scale array regime. IEEE Trans. Inf. Theory 59(10), 6441–6463 (2013)
[15]
Tan, G., Wu, B., Herfet, T.: Performance analysis of omp‐based channel estimations in mobile ofdm systems. IEEE Trans. Wireless Commun. 17(5), 3459–3473 (2018)
[16]
Shen, W., Dai, L., Shim, B.: Joint csit acquisition based on low‐rank matrix completion for fdd massive mimo systems. IEEE Commun. Lett. 19(12), 2178–2181 (2015)
[17]
Han, Y., Lee, J.: Two‐stage compressed sensing for millimeter wave channel estimation. In: 2016 IEEE International Symposium on Information Theory (ISIT), pp. 860–864. IEEE, Piscataway (2016)
[18]
Ziping, W., Liu, H., Li, B., Zhao, C.: Joint massive mimo csi estimation and feedback via randomized low‐rank approximation. IEEE Trans. Veh. Technol. 71(7), 7979–7984 (2022)
[19]
Xie, H., Gao, F., Zhang, S.: A unified transmission strategy for tdd/fdd massive mimo systems with spatial basis expansion model. IEEE Trans. Veh. Technol. 66(4), 3170–3184 (2017)
[20]
Gao, Z., Dai, L., Dai, W., Shim, B., Wang, Z.: Structured compressive sensing‐based spatio‐temporal joint channel estimation for fdd massive mimo. IEEE Trans. Commun. 64(2), 601–617 (2016)
[21]
Rao, X., Lau, V.K.N.: Distributed compressive csit estimation and feedback for fdd multi‐user massive mimo systems. IEEE Trans. Signal Process. 62(12), 3261–3271 (2014)
[22]
Shi, Y., Zhang, J., Letaief, K.B.: Low‐rank matrix completion via riemannian pursuit for topological interference management. In: 2015 IEEE International Symposium on Information Theory (ISIT), pp. 1831–1835. IEEE, Piscataway (2015)
[23]
Donoho, D.L., Maleki, A., Montanari, A.: Message‐passing algorithms for compressed sensing. Proc. Natl. Acad. Sci. 106(45), 18914–18919 (2009)
[24]
Rangan, S.: Generalized approximate message passing for estimation with random linear mixing. In: 2011 IEEE International Symposium on Information Theory Proceedings, pp. 2168–2172. IEEE, Piscataway (2011)
[25]
Caltagirone, F., Zdeborová, L., Krzakala, F.: On convergence of approximate message passing. In: 2014 IEEE International Symposium on Information Theory, pp. 1812–1816. IEEE, Piscataway (2014)
[26]
Huang, C., Liu, L., Yuen, C., Sun, S.: Iterative channel estimation using lse and sparse message passing for mmwave mimo systems. IEEE Trans. Signal Process. 67, 245–259 (2019)
[27]
Yang, B., Yu, Z., Lan, R., Zhang, J., Zhou, J., Hong, W.: Digital beamforming‐based massive mimo transceiver for 5g millimeter‐wave communications. IEEE Trans. Microwave Theory Tech. 66(7), 3403–3418 (2018)
[28]
Choi, S.T., Yang, K.S., Nishi, S.: A 60‐ghz point‐to‐multipoint millimeter‐wave fiber‐radio communication system. IEEE Trans. Microwave Theory Tech. 54, 1953–1960 (2006)
[29]
Malek Mohammadi, M., Babaie Zadeh, M., Amini, A.: Recovery of low‐rank matrices under affine constraints via a smoothed rank function. IEEE Trans. Signal Process. 62, 981–992 (2014)
[30]
Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum‐rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52, 471–501 (2010)
[31]
Sun, C., Dai, R.: A customized admm for rank‐constrained optimization problems with approximate formulations. In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pp. 3769–3774. IEEE, Piscataway (2017)
[32]
Somani, R., Gupta, C., Jain, P., Netrapalli, P.: Support recovery for orthogonal matching pursuit: Upper and lower bounds. In: Neural Information Processing Systems. MIT Press, Cambridge, MA (2018)
[33]
Gavish, M., Donoho, D.L.: The optimal hard threshold for singular values is 4/3$4/\sqrt {3}$. IEEE Trans. Inf. Theory 60(8), 5040–5053 (2014)
[34]
Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J Opt. 20(4), 1956–1982 (2010)
[35]
Vlachos, E., Alexandropoulos, G.C., Thompson, J.: Massive mimo channel estimation for millimeter wave systems via matrix completion. IEEE Signal Process Lett. 25(11), 1675–1679 (2018)
[36]
Yoo, T., Goldsmith, A.: Capacity of fading mimo channels with channel estimation error. In: 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577), vol. 2., pp. 808–813. IEEE, Piscataway (2004).
[37]
Meka, R., Jain, P., Dhillon, I.S.: Guaranteed rank minimization via singular value projection. In: Advances in Neural Information Processing Systems, vol. 23, pp. 937–945. MIT Press, Cambridge, MA (2009)

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image IET Communications
IET Communications  Volume 17, Issue 6
April 2023
115 pages
EISSN:1751-8636
DOI:10.1049/cmu2.v17.6
Issue’s Table of Contents
This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

Publisher

John Wiley & Sons, Inc.

United States

Publication History

Published: 15 February 2023

Author Tags

  1. channel estimation
  2. millimetre waves

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 29 Jan 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media