[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Balanced incomplete block designs and related designs

Published: 01 January 1975 Publication History

Abstract

No abstract available.

References

[1]
Bhattacharya, K.N., A new balanced incomplete block design. Sci. Cult. v9. 508
[2]
Bose, R.C., On the construction of balanced incomplete block designs. Ann. Eugenics. v9. 353-399.
[3]
Bose, R.C., Parker, E.T. and Shrikhande, S., Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler's conjecture. Can. J. Math. v12. 189-203.
[4]
Bose, R.C. and Shrikhande, S., On the construction of sets of mutually orthogonal Latin squares and the falsity of a conjecture of Euler. Trans. Am. Math. Soc. v95. 191-200.
[5]
Bruck, R.H. and Ryset, H.J., The nonexistence of certain finite projective planes. Can. J. Math. v1. 88-93.
[6]
Chowla, S., Erdös, P. and Straus, E.G., On the maximal number of pairwise orthogonal Latin squares of a given order. Can. J. Math. v12. 204-208.
[7]
Chowla, S. and Ryser, H.J., Combinatorial problems. Can. J. Math. v2. 93-99.
[8]
Collens, R.J., An introduction to a computer system for balanced incomplete block design research. 1973. The University of Manitoba, Winnipeg, Manitoba, Canada.
[9]
Connor Jr., W.S., On the structure of balanced incomplete block designs. Ann. Math. Statist. v23. 57-71.
[10]
Dickson, L.E., . 1952. History of the Theory of Numbers, 1952.Chelsea, New York.
[11]
Dulmage, A.L., Johnson, D.M. and Mendelson, N.S., Orthomorphisms of groups and orthogonal Latin squares. Can. J. Math. v13. 356-372.
[12]
Fisher, R.A. and Yates, F., Statistical Tables for Biological, Agricultural and Medical Research. 1963. 6th.ed. Oliver and Boyd, London.
[13]
Fort Jr., M.K. and Hedlund, G.A., Minimzl coverings of pairs by triples. Pacific J. Math. v8. 709-719.
[14]
Hall Jr., M., Combinatorial Theory. 1967. Blaisdell, Waltham, Mass.
[15]
Hall Jr., M. and Connor, W.S., An embedding theorem for balanced incomplete block designs. Can. J. Math. v6. 35-41.
[16]
Hanani, H., The existence and construction of balanced incomplete block designs. Ann. Math. Statist. v32. 361-385.
[17]
Hanani, H., On the number of orthogonal Latin squares. J. Combin. Theory. v8. 247-271.
[18]
Hanani, H., On balanced incomplete block designs with blocks having five elements. J. Combin. Theory. v12. 184-201.
[19]
Hanani, H., On transversal designs. In: Combinatories. Proc. of the Advanced Study Institute, 55. Math. Centre, Amsterdam. pp. 42-52.
[20]
MacNeish, H.F., Euler squares. Ann. Math. v23. 221-227.
[21]
W.H. Mills, Two new block designs, Utilitas Math., to appear.
[22]
Mullin, R.C. and Stanton, R.G., Classification and embedding of balanced incomplete block designs. Sankhyã. v30. 91-100.
[23]
Parker, E., Construction of some sets of mutually orthogonal Latin squares. Proc. Am. Math. Soc. v10. 946-949.
[24]
Rao, C.R., A study of BIB designs with replications r = 11 to 15. Sankhyã. v23. 117-127.
[25]
Über eine Steinersche combinatorische Aufgabe. Z. Reine Angew. Math. v56. 326-344.
[26]
Rogers, K., A note on orthogonal Latin squares. Pacific J. Math. v14. 1395-1397.
[27]
Schönheim, J., On coverings. Pacific J. Math. v14. 1405-1411.
[28]
Schönheim, J., On maximal systems of k-tuples. Studia Sci. Math. Hungar. v1. 363-368.
[29]
Sprott, D.A., Listing of BIB designs from r = 16 to 20. Sankhyã. v24. 203-204.
[30]
Steiner, J., Combinatorische Aufgabe. Z. Reine Angew. Math. v45. 181-182.
[31]
Takeuchi, K., A table of difference sets generating balanced incomplete block designs. Rev. Internl. Statist. Inst. v30. 361-366.
[32]
Tarry, G. and Tarry, G., Le problème des 36 officiers. Compt. Rend. Assoc. Fr. Av. Sci. v1. 122-123.
[33]
Wilson, R.M., Cyclomotomy and difference families in elementary Abelian groups. J. Number Theory. v4. 17-47.
[34]
R.M. Wilson, Concerning the number of mutually orthogonal Latin squares, in print.
[35]
R.M. Wilson, oral communication.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Discrete Mathematics
Discrete Mathematics  Volume 11, Issue 3
January, 1975
211 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 01 January 1975

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 27 Dec 2024

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media